Stress activation of mesocorticolimbic dopamine neurons: effects of a glycine/NMDA receptor antagonist. 1993

B A Morrow, and W A Clark, and R H Roth
Yale University School of Medicine, Department of Pharmacology and Psychiatry, New Haven, CT 06510.

Restraint of brief duration causes a metabolic activation of mesocortical and some mesolimbic dopaminergic systems with little effect on the nigrostriatal system. We have examined the ability of an antagonist of the allosteric glycine site of the N-methyl-D-aspartate receptor complex to block the stress-induced response in dopamine utilization. Thirty minutes of restraint stress elevated dopamine metabolism, as measured by the ratio between 3,4-dihydroxyphenylacetic acid (DOPAC) and dopamine, in both the medial prefrontal cortex and nucleus accumbens. An antagonist for the glycine/N-methyl-D-aspartate receptor complex, 1-hydroxy-3-aminopyrrolidone-2 ((+)-HA-966), given systemically or injected into the ventral tegmental area, prevents the stress-induced increase in dopamine metabolism in the prefrontal cortex without altering the response in the nucleus accumbens. Similarly, systemic administration of the non-competitive antagonist for the N-methyl-D-aspartate receptor, dizocilpine ((+)-MK-801), blocked the stress-induced rise in dopamine metabolism in the medial prefrontal cortex but not the nucleus accumbens. The negative enantiomer of HA-966 did not produce a selective antagonism of the stress-induced dopamine metabolism in the medial prefrontal cortex. These results support previous work which suggest the mesocortical and mesoaccumbens dopamine neurons respond to excitatory input through different glutamate receptor mechanisms. Additionally, the specific blockade of the stress-induced change in dopamine metabolism in the medial prefrontal cortex by a glycine antagonist implies a role for such an antagonist in treatment of disease states which may involve disruptions of N-methyl-D-aspartate receptor function.

UI MeSH Term Description Entries
D007276 Injections, Intraventricular Injections into the cerebral ventricles. Intraventricular Injections,Injection, Intraventricular,Intraventricular Injection
D008297 Male Males
D009714 Nucleus Accumbens Collection of pleomorphic cells in the caudal part of the anterior horn of the LATERAL VENTRICLE, in the region of the OLFACTORY TUBERCLE, lying between the head of the CAUDATE NUCLEUS and the ANTERIOR PERFORATED SUBSTANCE. It is part of the so-called VENTRAL STRIATUM, a composite structure considered part of the BASAL GANGLIA. Accumbens Nucleus,Nucleus Accumbens Septi,Accumbens Septi, Nucleus,Accumbens Septus, Nucleus,Accumbens, Nucleus,Nucleus Accumbens Septus,Nucleus, Accumbens,Septi, Nucleus Accumbens,Septus, Nucleus Accumbens
D011760 Pyrrolidinones A group of compounds that are derivatives of oxo-pyrrolidines. A member of this group is 2-oxo pyrrolidine, which is an intermediate in the manufacture of polyvinylpyrrolidone. (From Merck Index, 11th ed) Pyrrolidinone,Pyrrolidone,Pyrrolidones
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013237 Stereoisomerism The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Molecular Stereochemistry,Stereoisomers,Stereochemistry, Molecular,Stereoisomer
D013312 Stress, Physiological The unfavorable effect of environmental factors (stressors) on the physiological functions of an organism. Prolonged unresolved physiological stress can affect HOMEOSTASIS of the organism, and may lead to damaging or pathological conditions. Biotic Stress,Metabolic Stress,Physiological Stress,Abiotic Stress,Abiotic Stress Reaction,Abiotic Stress Response,Biological Stress,Metabolic Stress Response,Physiological Stress Reaction,Physiological Stress Reactivity,Physiological Stress Response,Abiotic Stress Reactions,Abiotic Stress Responses,Abiotic Stresses,Biological Stresses,Biotic Stresses,Metabolic Stress Responses,Metabolic Stresses,Physiological Stress Reactions,Physiological Stress Responses,Physiological Stresses,Reaction, Abiotic Stress,Reactions, Abiotic Stress,Response, Abiotic Stress,Response, Metabolic Stress,Stress Reaction, Physiological,Stress Response, Metabolic,Stress Response, Physiological,Stress, Abiotic,Stress, Biological,Stress, Biotic,Stress, Metabolic
D015102 3,4-Dihydroxyphenylacetic Acid A deaminated metabolite of LEVODOPA. DOPAC,Homoprotocatechuic Acid,3,4-Dihydroxyphenylacetic Acid, Monosodium Salt,3,4 Dihydroxyphenylacetic Acid
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate

Related Publications

B A Morrow, and W A Clark, and R H Roth
May 1997, European journal of pharmacology,
B A Morrow, and W A Clark, and R H Roth
January 1996, Annual review of neuroscience,
B A Morrow, and W A Clark, and R H Roth
May 1996, Journal of neurochemistry,
B A Morrow, and W A Clark, and R H Roth
January 2002, Journal of chemical information and computer sciences,
B A Morrow, and W A Clark, and R H Roth
January 2002, American journal of physiology. Regulatory, integrative and comparative physiology,
B A Morrow, and W A Clark, and R H Roth
January 1988, Annals of the New York Academy of Sciences,
B A Morrow, and W A Clark, and R H Roth
November 1999, European journal of pharmacology,
B A Morrow, and W A Clark, and R H Roth
May 1996, Pharmacology, biochemistry, and behavior,
Copied contents to your clipboard!