Glucose transport in L6 myoblasts overexpressing GLUT1 and GLUT4. 1993

R Robinson, and L J Robinson, and D E James, and J C Lawrence
Department of Molecular Biology, Washington University School of Medicine, St. Louis, Missouri 63110.

The roles of the glucose transporter isoforms, GLUT1 and GLUT4, in mediating insulin-stimulated glucose transport were investigated by stably overexpressing the transporters in L6 myoblasts. Levels of GLUT1 and GLUT4 in myoblasts from the cell lines having the highest content of these transporters were approximately 16- and 30-fold higher, respectively, than levels in nontransfected cells. The basal rate of 2-deoxy[3H]glucose uptake was severalfold higher in cells overexpressing GLUT1 than in the parent L6 myoblasts or in control cell lines that were generated by transfecting cells with expression vectors lacking transporter insert. The basal rate was not elevated in any of the lines expressing GLUT4. The net increase in 2-deoxy[3H]glucose uptake produced by insulin was larger in both the GLUT1 and GLUT4 cells than in the control cells. Insulin increased uptake in GLUT4 cells by as much as 6-fold; whereas, the fold increase over basal uptake produced by insulin in GLUT1 cells was comparable to that (2-fold) observed in the control myocytes. Thus, both GLUT1 and GLUT4 can mediate insulin-stimulated glucose transport in L6 myoblasts, although GLUT4 is needed to observe large percentage increases comparable to those observed in skeletal muscle fibers in vivo. In contrast to insulin, the protein phosphatase inhibitors, okadaic acid and calyculin A, inhibited glucose transport in cells expressing either GLUT1 or GLUT4. Calyculin A, which produced a half-maximum effect at 10 nM, was approximately 100 times more potent than okadaic acid in decreasing both basal and insulin-stimulated 2-deoxyglucose uptake. Inhibition of uptake by calyculin A was associated with a decrease in the cell surface concentration of both GLUT1 and GLUT4. These results indicate that increased protein phosphorylation can lead to inhibition of transport mediated by both GLUT1 and GLUT4.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008387 Marine Toxins Toxic or poisonous substances elaborated by marine flora or fauna. They include also specific, characterized poisons or toxins for which there is no more specific heading, like those from poisonous FISHES. Marine Biotoxins,Phycotoxins
D009004 Monosaccharide Transport Proteins A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES. Hexose Transport Proteins,Band 4.5 Preactin,Erythrocyte Band 4.5 Protein,Glucose Transport-Inducing Protein,Hexose Transporter,4.5 Preactin, Band,Glucose Transport Inducing Protein,Preactin, Band 4.5,Proteins, Monosaccharide Transport,Transport Proteins, Hexose,Transport Proteins, Monosaccharide,Transport-Inducing Protein, Glucose
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010080 Oxazoles Five-membered heterocyclic ring structures containing an oxygen in the 1-position and a nitrogen in the 3-position, in distinction from ISOXAZOLES where they are at the 1,2 positions. Oxazole,1,3-Oxazolium-5-Oxides,Munchnones,1,3 Oxazolium 5 Oxides
D010749 Phosphoprotein Phosphatases A group of enzymes removing the SERINE- or THREONINE-bound phosphate groups from a wide range of phosphoproteins, including a number of enzymes which have been phosphorylated under the action of a kinase. (Enzyme Nomenclature, 1992) Phosphoprotein Phosphatase,Phosphoprotein Phosphohydrolase,Protein Phosphatase,Protein Phosphatases,Casein Phosphatase,Ecto-Phosphoprotein Phosphatase,Nuclear Protein Phosphatase,Phosphohistone Phosphatase,Phosphoprotein Phosphatase-2C,Phosphoseryl-Protein Phosphatase,Protein Phosphatase C,Protein Phosphatase C-I,Protein Phosphatase C-II,Protein Phosphatase H-II,Protein-Serine-Threonine Phosphatase,Protein-Threonine Phosphatase,Serine-Threonine Phosphatase,Threonine Phosphatase,Ecto Phosphoprotein Phosphatase,Phosphatase C, Protein,Phosphatase C-I, Protein,Phosphatase C-II, Protein,Phosphatase H-II, Protein,Phosphatase, Casein,Phosphatase, Ecto-Phosphoprotein,Phosphatase, Nuclear Protein,Phosphatase, Phosphohistone,Phosphatase, Phosphoprotein,Phosphatase, Phosphoseryl-Protein,Phosphatase, Protein,Phosphatase, Protein-Serine-Threonine,Phosphatase, Protein-Threonine,Phosphatase, Serine-Threonine,Phosphatase, Threonine,Phosphatase-2C, Phosphoprotein,Phosphatases, Phosphoprotein,Phosphatases, Protein,Phosphohydrolase, Phosphoprotein,Phosphoprotein Phosphatase 2C,Phosphoseryl Protein Phosphatase,Protein Phosphatase C I,Protein Phosphatase C II,Protein Phosphatase H II,Protein Phosphatase, Nuclear,Protein Serine Threonine Phosphatase,Protein Threonine Phosphatase,Serine Threonine Phosphatase
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003847 Deoxyglucose 2-Deoxy-D-arabino-hexose. An antimetabolite of glucose with antiviral activity. 2-Deoxy-D-glucose,2-Deoxyglucose,2-Desoxy-D-glucose,2 Deoxy D glucose,2 Deoxyglucose,2 Desoxy D glucose

Related Publications

R Robinson, and L J Robinson, and D E James, and J C Lawrence
July 2012, Thyroid : official journal of the American Thyroid Association,
R Robinson, and L J Robinson, and D E James, and J C Lawrence
July 1998, The Journal of biological chemistry,
R Robinson, and L J Robinson, and D E James, and J C Lawrence
February 2014, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
R Robinson, and L J Robinson, and D E James, and J C Lawrence
January 2013, PloS one,
R Robinson, and L J Robinson, and D E James, and J C Lawrence
March 1991, Biochemical and biophysical research communications,
R Robinson, and L J Robinson, and D E James, and J C Lawrence
November 2019, Biochemical and biophysical research communications,
R Robinson, and L J Robinson, and D E James, and J C Lawrence
February 2010, Analytical biochemistry,
R Robinson, and L J Robinson, and D E James, and J C Lawrence
September 1986, The Biochemical journal,
R Robinson, and L J Robinson, and D E James, and J C Lawrence
October 2022, Pharmaceuticals (Basel, Switzerland),
R Robinson, and L J Robinson, and D E James, and J C Lawrence
April 1996, Diabetes research and clinical practice,
Copied contents to your clipboard!