Visual receptive field properties in kitten pretectal nucleus of the optic tract and dorsal terminal nucleus of the accessory optic tract. 1993

C Distler, and K P Hoffmann
Allgemeine Zoologie und Neurobiologie, Ruhr-Universität Bochum, Germany.

1. Neurons in the pretectal nucleus of the optic tract (NOT) and dorsal terminal nucleus of the accessory optic tract (DTN) were recorded in anesthetized and paralyzed kittens on postnatal days 18 to 48 (P18-P48) as well as in adult cats. 2. Spontaneous as well as stimulus driven discharge rates of NOT-DTN neurons in the youngest kittens (P18-P23) are significantly lower than in older kittens (P27-P33) or adult cats. 3. Visual latencies of NOT-DTN neurons in P18-P23 kittens are significantly longer than in P27-P33 kittens. They further decrease as the animals reach adulthood. 4. Already in the youngest animals recorded in this experimental series (P18) NOT-DTN neurons were selective for ipsiversive horizontal stimulus movement. When expressed as the difference between response strength during stimulation in the preferred and the nonpreferred direction, P18-P23 NOT-DTN neurons are less direction selective than NOT-DTN cells in older animals. However, the normalized directional tuning expressed as percent change in discharge rate per degree change in stimulus direction away from the preferred direction (where discharge rate is set 100%) is about equal in all age groups. 5. NOT-DTN neurons in P18-P23 kittens respond to a rather limited range of stimulus speeds with an optimum at approximately 10 degrees/s. In P27-P33 kittens, NOT-DTN neurons increase their responsive range to higher stimulus speeds. As the animals approach adulthood, the range of effective stimulus speeds further broadens to include very low ones. 6. In P18-P23 kittens, the majority of NOT-DTN neurons is exclusively activated by the contralateral eye; only a few neurons receive an additional input from the ipsilateral eye. In P27-P48 kittens, the influence of the ipsilateral eye has significantly increased but with the majority of NOT-DTN cells still being dominated by the contralateral eye. Finally, in adults, a further strengthening of the ipsilateral input leads to a more binocularly balanced input to NOT-DTN cells. 7. Electrical stimulation in areas 17 and 18 did not elicit orthodromic action potentials in NOT-DTN neurons before P27. Thus the cortical input to the NOT-DTN in kittens becomes functional only at 4 wk of age. 8. In conclusion, the significant changes of visual response properties of NOT-DTN neurons coincide with the time when the cortical input to the NOT-DTN becomes functional.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D009039 Motion Perception The real or apparent movement of objects through the visual field. Movement Perception,Perception, Motion,Perception, Movement
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009900 Optic Nerve The 2nd cranial nerve which conveys visual information from the RETINA to the brain. The nerve carries the axons of the RETINAL GANGLION CELLS which sort at the OPTIC CHIASM and continue via the OPTIC TRACTS to the brain. The largest projection is to the lateral geniculate nuclei; other targets include the SUPERIOR COLLICULI and the SUPRACHIASMATIC NUCLEI. Though known as the second cranial nerve, it is considered part of the CENTRAL NERVOUS SYSTEM. Cranial Nerve II,Second Cranial Nerve,Nervus Opticus,Cranial Nerve, Second,Cranial Nerves, Second,Nerve, Optic,Nerve, Second Cranial,Nerves, Optic,Nerves, Second Cranial,Optic Nerves,Second Cranial Nerves
D012027 Reflex, Vestibulo-Ocular A reflex wherein impulses are conveyed from the cupulas of the SEMICIRCULAR CANALS and from the OTOLITHIC MEMBRANE of the SACCULE AND UTRICLE via the VESTIBULAR NUCLEI of the BRAIN STEM and the median longitudinal fasciculus to the OCULOMOTOR NERVE nuclei. It functions to maintain a stable retinal image during head rotation by generating appropriate compensatory EYE MOVEMENTS. Vestibulo-Ocular Reflex,Reflex, Vestibuloocular,Reflexes, Vestibo-Ocular,Reflexes, Vestibuloocular,Reflex, Vestibulo Ocular,Reflexes, Vestibo Ocular,Vestibo-Ocular Reflexes,Vestibulo Ocular Reflex,Vestibuloocular Reflex,Vestibuloocular Reflexes
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004292 Dominance, Cerebral Dominance of one cerebral hemisphere over the other in cerebral functions. Cerebral Dominance,Hemispheric Specialization,Dominances, Cerebral,Specialization, Hemispheric
D005074 Evoked Potentials, Visual The electric response evoked in the cerebral cortex by visual stimulation or stimulation of the visual pathways. Visual Evoked Response,Evoked Potential, Visual,Evoked Response, Visual,Evoked Responses, Visual,Potential, Visual Evoked,Potentials, Visual Evoked,Response, Visual Evoked,Responses, Visual Evoked,Visual Evoked Potential,Visual Evoked Potentials,Visual Evoked Responses
D000055 Accessory Nerve The 11th cranial nerve which originates from NEURONS in the MEDULLA and in the CERVICAL SPINAL CORD. It has a cranial root, which joins the VAGUS NERVE (10th cranial) and sends motor fibers to the muscles of the LARYNX, and a spinal root, which sends motor fibers to the TRAPEZIUS and the sternocleidomastoid muscles. Cranial Nerve XI,Eleventh Cranial Nerve,Spinal Accessory Nerve,Nerve XI,Nervus Accessorius,Accessorius, Nervus,Accessory Nerve, Spinal,Accessory Nerves,Accessory Nerves, Spinal,Cranial Nerve, Eleventh,Cranial Nerves, Eleventh,Eleventh Cranial Nerves,Nerve XIs,Nerve, Accessory,Nerve, Eleventh Cranial,Nerve, Spinal Accessory,Nerves, Accessory,Nerves, Eleventh Cranial,Nerves, Spinal Accessory,Spinal Accessory Nerves

Related Publications

C Distler, and K P Hoffmann
January 1989, Experimental brain research,
C Distler, and K P Hoffmann
July 2003, The European journal of neuroscience,
C Distler, and K P Hoffmann
May 2007, Journal of neurophysiology,
Copied contents to your clipboard!