Sulphonylureas reduce the slowly inactivating D-type outward current in rat hippocampal neurons. 1993

V Crépel, and K Krnjević, and Y Ben-Ari
INSERM U-29, Paris, France.

1. Using intracellular recording in hippocampal slices, we have examined, in CA3 pyramidal neurons, the effects of sulphonylureas (blockers of ATP-sensitive K+ channels) on the slowly inactivating D-type K+ current (ID). 2. In the presence of TTX (1 microM) to block Na+ currents, ID had the following characteristics: activation by large depolarizing pulses from membrane potentials negative to -75 mV, slow inactivation kinetics, high sensitivity to 4-aminopyridine (4-AP, 3-40 microM), insensitivity to tetraethylammonium (TEA, 10 mM), Cs+ (3 mM) and carbachol (50 microM). 3. Applications of glibenclamide (10 microM) did not modify the input conductance of the cell, but reduced the amplitude of ID by 31.2 +/- 5.6% (n = 16), without altering its voltage dependence and inactivation kinetics. The effects were usually reversible. 4. Glibenclamide also reduced ID in the presence of TEA (10 mM), Cs+ (3 mM) and carbachol (50 microM), to block several K+ currents (IK, IC, IQ, IM), as well as kynurenate (1 mM) and bicuculline (10 microM) to block on-going synaptic currents mediated by activation of non-NMDA (N-methyl-D-aspartate) and GABA (gamma-aminobutyrate)-A receptors, respectively. 5. Comparable depressions of ID were produced by two other sulphonylureas: gliquidone (10 microM), 42.6 +/- 7.9% (n = 13) and tolbutamide (500 microM), 39.1 +/- 12.8 (n = 8). 6. It is concluded that, in the central nervous system, sulphonylureas can modulate K+ currents which are not generated by ATP-sensitive K+ channels.

UI MeSH Term Description Entries
D007004 Hypoglycemic Agents Substances which lower blood glucose levels. Antidiabetic,Antidiabetic Agent,Antidiabetic Drug,Antidiabetics,Antihyperglycemic,Antihyperglycemic Agent,Hypoglycemic,Hypoglycemic Agent,Hypoglycemic Drug,Antidiabetic Agents,Antidiabetic Drugs,Antihyperglycemic Agents,Antihyperglycemics,Hypoglycemic Drugs,Hypoglycemic Effect,Hypoglycemic Effects,Hypoglycemics,Agent, Antidiabetic,Agent, Antihyperglycemic,Agent, Hypoglycemic,Agents, Antidiabetic,Agents, Antihyperglycemic,Agents, Hypoglycemic,Drug, Antidiabetic,Drug, Hypoglycemic,Drugs, Antidiabetic,Drugs, Hypoglycemic,Effect, Hypoglycemic,Effects, Hypoglycemic
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D005905 Glyburide An antidiabetic sulfonylurea derivative with actions like those of chlorpropamide Glibenclamide,Daonil,Diabeta,Euglucon 5,Euglucon N,Glybenclamide,HB-419,HB-420,Maninil,Micronase,Neogluconin,HB 419,HB 420,HB419,HB420
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013453 Sulfonylurea Compounds A class of compounds in which a sulfone functional group is attached to UREA. Compounds, Sulfonylurea

Related Publications

V Crépel, and K Krnjević, and Y Ben-Ari
September 2006, Journal of neurophysiology,
V Crépel, and K Krnjević, and Y Ben-Ari
October 1993, Pflugers Archiv : European journal of physiology,
V Crépel, and K Krnjević, and Y Ben-Ari
November 1988, Nature,
V Crépel, and K Krnjević, and Y Ben-Ari
December 1993, Neuroreport,
V Crépel, and K Krnjević, and Y Ben-Ari
February 2004, Journal of neurophysiology,
V Crépel, and K Krnjević, and Y Ben-Ari
June 2007, The Journal of physiology,
V Crépel, and K Krnjević, and Y Ben-Ari
October 1998, Circulation research,
V Crépel, and K Krnjević, and Y Ben-Ari
August 1999, The Journal of neuroscience : the official journal of the Society for Neuroscience,
V Crépel, and K Krnjević, and Y Ben-Ari
March 2013, Journal of neurophysiology,
V Crépel, and K Krnjević, and Y Ben-Ari
March 1998, Naunyn-Schmiedeberg's archives of pharmacology,
Copied contents to your clipboard!