Regulation of bicarbonate-dependent ductular bile secretion assessed by lumenal micropuncture of isolated rodent intrahepatic bile ducts. 1993

S K Roberts, and S M Kuntz, and G J Gores, and N F LaRusso
Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905.

While intrahepatic bile duct epithelial cells secrete bile through transport of ions and water, the physiological mechanisms regulating ductular bile secretion are obscure, in part because of the lack of suitable experimental models. We report here the successful micropuncture of the lumen of isolated intrahepatic bile ducts and direct measurements of ductular ion secretion. Intact, polarized bile duct units (BDUs) were isolated from livers of normal rats by enzymatic digestion and microdissection. BDUs were cultured and mounted on a microscope in bicarbonate-containing buffer, and the lumens were microinjected with 2',7'-bis(2-carboxyethyl)-5-(and -6)carboxyfluorescein (BCECF)-dextran. Lumenal pH was measured by ratio imaging of BCECF fluorescence using digitized video fluorescent microscopy. After 36 hr in culture, the ends of BDUs sealed, forming closed compartments. After lumenal microinjection of BCECF-dextran, fluorescence was stable at the pH-insensitive wavelength, indicating no dye leakage. Serial changes in pH of extralumenal buffers containing pH-gradient collapsing ionophores allowed us to establish reliable standard curves relating fluorescence ratio to lumenal pH (r = 0.99; P < 0.001). By this approach, the basal pH inside the lumen of BDUs was 7.87 +/- 0.08 units (n = 9), 0.47 unit higher (P < 0.001) than the bathing buffer pH. Addition of 100 microM forskolin increased (P = 0.02) the lumenal pH from 7.78 +/- 0.06 to 7.97 +/- 0.06 units (n = 5); the forskolin effect was completely abolished by incubation of BDUs in HCO3-/CO2-free buffer. Moreover, forskolin caused a 50-fold increase in cAMP levels in BDUs. The observations are consistent with cAMP-dependent, active lumenal HCO3- secretion by BDUs. Furthermore, they demonstrate the suitability of the BDU model for studying regulatory and mechanistic aspects of ductular bile secretion.

UI MeSH Term Description Entries
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005452 Fluoresceins A family of spiro(isobenzofuran-1(3H),9'-(9H)xanthen)-3-one derivatives. These are used as dyes, as indicators for various metals, and as fluorescent labels in immunoassays. Tetraiodofluorescein
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D005576 Colforsin Potent activator of the adenylate cyclase system and the biosynthesis of cyclic AMP. From the plant COLEUS FORSKOHLII. Has antihypertensive, positive inotropic, platelet aggregation inhibitory, and smooth muscle relaxant activities; also lowers intraocular pressure and promotes release of hormones from the pituitary gland. Coleonol,Forskolin,N,N-Dimethyl-beta-alanine-5-(acetyloxy)-3-ethenyldodecahydro-10,10b-dihydroxy-3,4a,7,7,10a-pentamethyl-1-oxo-1H-naphtho(2,1-b)pyran-6-yl Ester HCl,NKH 477,NKH-477,NKH477
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations

Related Publications

S K Roberts, and S M Kuntz, and G J Gores, and N F LaRusso
July 1986, Gaoxiong yi xue ke xue za zhi = The Kaohsiung journal of medical sciences,
S K Roberts, and S M Kuntz, and G J Gores, and N F LaRusso
January 1991, Fortschritte der Medizin,
S K Roberts, and S M Kuntz, and G J Gores, and N F LaRusso
January 2012, ISRN surgery,
S K Roberts, and S M Kuntz, and G J Gores, and N F LaRusso
January 1968, Israel journal of medical sciences,
S K Roberts, and S M Kuntz, and G J Gores, and N F LaRusso
May 1952, Prensa medica argentina,
S K Roberts, and S M Kuntz, and G J Gores, and N F LaRusso
December 1966, Wiadomosci lekarskie (Warsaw, Poland : 1960),
S K Roberts, and S M Kuntz, and G J Gores, and N F LaRusso
April 1954, Journal de chirurgie,
S K Roberts, and S M Kuntz, and G J Gores, and N F LaRusso
June 1962, Annales de chirurgie,
S K Roberts, and S M Kuntz, and G J Gores, and N F LaRusso
June 1975, Polski tygodnik lekarski (Warsaw, Poland : 1960),
S K Roberts, and S M Kuntz, and G J Gores, and N F LaRusso
March 1959, Prensa medica argentina,
Copied contents to your clipboard!