Synergism in replication and translation of messenger RNA in a cell-free system. 1993

I Y Morozov, and V I Ugarov, and A B Chetverin, and A S Spirin
Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region.

Combination of the Q beta replicase reaction with the Escherichia coli cell-free translation system markedly enhances replication of a recombinant RQ-DHFR RNA consisting of the dihydrofolate reductase (DHFR) mRNA sequence inserted into RQ135(-1) RNA, an efficient naturally occurring Q beta replicase template. The enhancement is associated with a replication asymmetry previously described for the replication of Q beta phage RNA in vivo; the sense (+)-strands are produced in large excess over the antisense (-)-strands. This, in turn, results in increased synthesis of the functionally active DHFR. These effects are not observed when DHFR mRNAs or RQ135(-1) RNAs are used as templates, if the translation system is not complete, or if it is inhibited by puromycin. The coupled replication-translation of nonviral mRNA recombinants can serve as a useful model for studying the fundamental aspects of virus amplification and can be implemented for large-scale protein synthesis in vitro.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D011777 Q beta Replicase An enzyme that catalyzes the replication of the RNA of coliphage Q beta. EC 2.7.7.-. Qbeta Replicase,Replicase, Q beta,Replicase, Qbeta,beta Replicase, Q
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D004274 DNA, Recombinant Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D013762 Tetrahydrofolate Dehydrogenase An enzyme of the oxidoreductase class that catalyzes the reaction 7,8-dihyrofolate and NADPH to yield 5,6,7,8-tetrahydrofolate and NADPH+, producing reduced folate for amino acid metabolism, purine ring synthesis, and the formation of deoxythymidine monophosphate. Methotrexate and other folic acid antagonists used as chemotherapeutic drugs act by inhibiting this enzyme. (Dorland, 27th ed) EC 1.5.1.3. Dihydrofolate Dehydrogenase,Dihydrofolate Reductase,Folic Acid Reductase,Acid Reductase, Folic,Dehydrogenase, Dihydrofolate,Dehydrogenase, Tetrahydrofolate,Reductase, Dihydrofolate,Reductase, Folic Acid

Related Publications

I Y Morozov, and V I Ugarov, and A B Chetverin, and A S Spirin
October 1971, Nature,
I Y Morozov, and V I Ugarov, and A B Chetverin, and A S Spirin
December 1980, Biulleten' eksperimental'noi biologii i meditsiny,
I Y Morozov, and V I Ugarov, and A B Chetverin, and A S Spirin
January 1983, Methods in enzymology,
I Y Morozov, and V I Ugarov, and A B Chetverin, and A S Spirin
October 1971, Nature: New biology,
I Y Morozov, and V I Ugarov, and A B Chetverin, and A S Spirin
January 1994, The Journal of biological chemistry,
I Y Morozov, and V I Ugarov, and A B Chetverin, and A S Spirin
November 1973, Journal of virology,
I Y Morozov, and V I Ugarov, and A B Chetverin, and A S Spirin
January 1998, Methods in molecular biology (Clifton, N.J.),
I Y Morozov, and V I Ugarov, and A B Chetverin, and A S Spirin
January 1998, Methods in molecular biology (Clifton, N.J.),
I Y Morozov, and V I Ugarov, and A B Chetverin, and A S Spirin
January 1985, Methods in molecular biology (Clifton, N.J.),
I Y Morozov, and V I Ugarov, and A B Chetverin, and A S Spirin
January 1985, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!