| D010084 |
Oxidation-Reduction |
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). |
Redox,Oxidation Reduction |
|
| D004268 |
DNA-Binding Proteins |
Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. |
DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins |
|
| D004586 |
Electrophoresis |
An electrochemical process in which macromolecules or colloidal particles with a net electric charge migrate in a solution under the influence of an electric current. |
Electrophoreses |
|
| D005786 |
Gene Expression Regulation |
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. |
Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression |
|
| D006360 |
Heat-Shock Proteins |
Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. |
Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress |
|
| D006361 |
Heating |
The application of heat to raise the temperature of the environment, ambient or local, or the systems for accomplishing this effect. It is distinguished from HEAT, the physical property and principle of physics. |
|
|
| D006861 |
Hydrogen Peroxide |
A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. |
Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen |
|
| D000076249 |
Heat Shock Transcription Factors |
Heat and cold stress-inducible, transcription factors that bind to inverted 5'-NGAAN-3' pentamer DNA sequences and are regulated by POLY-ADP-RIBOSYLATION. They play essential roles as transcriptional activators of the HEAT-SHOCK RESPONSE by inducing expression of large classes of MOLECULAR CHAPERONES and heat-shock proteins. They also function in DNA REPAIR; transcriptional reactivation of latent HIV-1; and pre-mRNA processing and nuclear export of HSP70 HEAT-SHOCK PROTEINS during heat stress. |
Heat Stress Transcription Factor,Plant Heat Shock Factor,Heat Shock Factor Protein 1,Heat Shock Factor, Plant,Heat Shock Transcription Factor,Heat Shock Transcription Factor 1,Heat Stress Transcription Factors,Plant Heat Shock Factors |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D012333 |
RNA, Messenger |
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. |
Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated |
|