Consumption of EGF by A431 cells: evidence for receptor recycling. 1993

H Masui, and L Castro, and J Mendelsohn
Laboratory of Receptor Biology, Memorial Sloan-Kettering Cancer Center, New York, New York.

We examined the extent of EGF consumption by EGFR in A431 cells. When 125I-EGF was added to A431 cell cultures at low or high density, at concentrations which corresponded to 10-fold excess of ligand over receptor on the cell surface, most of the 125I-EGF was consumed within 2 h. The amounts of 125I-EGF consumed were much greater than available EGFR on the A431 cells, by a factor of 6.5 in low-density cultures and 5.8 in high-density cultures. When the concentration of 125I-EGF was increased in low density cultures, further consumption of 125I-EGF by the A431 cells was greatly reduced, partially due to a rapid down regulation of EGFR. However, when higher concentrations of 125I-EGF were added to high density cultures, with reduced receptor down regulation, the cells continued to consume a large fraction of the EGF in the culture medium. The consumption of 125I-EGF by these cultures was in excellent agreement with the measured amount of ligand internalized into the cell. EGF consumption was far in excess of the number of EGFR down regulated or degraded. Only a minor portion of the EGFR could have been replaced during the assay period by synthesis of new EGFR or from the intracellular pool of EGFR, and the fluid-phase uptake of EGF is only temporarily increased by exposure to EGF. Our results demonstrate that EGFR in high density A431 cell cultures recycled many times. The apparent level of recycling was dependent upon the concentration of EGF and followed Michaelis-Menton kinetics for ligand concentrations as high as 215 nM. At this EGF concentration, high-density cultures consumed 45 EGF molecules per receptor over a period of 6 h.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D010873 Pinocytosis The engulfing of liquids by cells by a process of invagination and closure of the cell membrane to form fluid-filled vacuoles. Pinocytoses
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

H Masui, and L Castro, and J Mendelsohn
March 1989, Tsitologiia,
H Masui, and L Castro, and J Mendelsohn
April 1993, Transactions of the Kansas Academy of Science. Kansas Academy of Science,
H Masui, and L Castro, and J Mendelsohn
September 1996, European journal of cell biology,
H Masui, and L Castro, and J Mendelsohn
March 1989, Biochimica et biophysica acta,
H Masui, and L Castro, and J Mendelsohn
January 1993, Cell biology international,
H Masui, and L Castro, and J Mendelsohn
September 2002, Experimental cell research,
H Masui, and L Castro, and J Mendelsohn
August 1982, Proceedings of the National Academy of Sciences of the United States of America,
H Masui, and L Castro, and J Mendelsohn
December 2004, Biochemical and biophysical research communications,
Copied contents to your clipboard!