Dystrophin-glycoprotein complex and laminin colocalize to the sarcolemma and transverse tubules of cardiac muscle. 1993

R Klietsch, and J M Ervasti, and W Arnold, and K P Campbell, and A O Jorgensen
Department of Anatomy & Cell Biology, University of Toronto, Ontario, Canada.

The expression and subcellular distribution of the dystrophin-glycoprotein complex and laminin were examined in cardiac muscle by immunoblot and immunofluorescence analysis of rabbit and sheep papillary muscle. The five dystrophin-associated proteins (DAPs), 156-DAG, 59-DAP, 50-DAG, 43-DAG, and 35-DAG, were identified in rabbit ventricular muscle and found to codistribute with dystrophin in both papillary myofibers and Purkinje fibers. The DAPs and dystrophin codistributed not only in the free surface sarcolemma but also in interior regions of the myofibers where T tubules are present. Neither the DAPs nor dystrophin were detected in intercalated discs, a specialized region of cardiac sarcolemma where neighboring myocardial cells are physically joined by cell-cell junctions. Similarly, in bundles of Purkinje fibers, which lack T tubules, DAPs and dystrophin were also found to codistribute at the free surface sarcolemma but were not detected either in the region of surface sarcolemma closely apposed to a neighboring Purkinje fiber or in interior regions of these myofibers. Comparison between the distribution of the dystrophin-glycoprotein complex and laminin showed that laminin codistributes with the components of this complex in both papillary myofibers and Purkinje fibers. These results are consistent with previous findings demonstrating that the extracellularly exposed 156-DAG (dystroglycan) of the skeletal muscle dystrophin-glycoprotein complex binds laminin, a component of the basement membrane. Although we demonstrate that DAPs, dystrophin, and laminin colocalize to the sarcolemma in rabbit and sheep papillary myofibers as they do in skeletal myofibers, the most striking difference between the subcellular distribution of these proteins in cardiac and skeletal muscle is that the dystrophin-glycoprotein complex and laminin also localize to regions of the fibers where T tubules are distributed in cardiac but not in skeletal muscle. These results imply that the protein composition and thus possibly some functions of T tubules in cardiac muscle are distinct from those of skeletal muscle.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007797 Laminin Large, noncollagenous glycoprotein with antigenic properties. It is localized in the basement membrane lamina lucida and functions to bind epithelial cells to the basement membrane. Evidence suggests that the protein plays a role in tumor invasion. Merosin,Glycoprotein GP-2,Laminin M,Laminin M Chain,Chain, Laminin M,Glycoprotein GP 2,M Chain, Laminin
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010210 Papillary Muscles Conical muscular projections from the walls of the cardiac ventricles, attached to the cusps of the atrioventricular valves by the chordae tendineae. Muscle, Papillary,Muscles, Papillary,Papillary Muscle
D011690 Purkinje Fibers Modified cardiac muscle fibers composing the terminal portion of the heart conduction system. Purkinje Fiber,Fiber, Purkinje,Fibers, Purkinje
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D003598 Cytoskeletal Proteins Major constituent of the cytoskeleton found in the cytoplasm of eukaryotic cells. They form a flexible framework for the cell, provide attachment points for organelles and formed bodies, and make communication between parts of the cell possible. Proteins, Cytoskeletal
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog

Related Publications

R Klietsch, and J M Ervasti, and W Arnold, and K P Campbell, and A O Jorgensen
January 1996, Postepy biochemii,
R Klietsch, and J M Ervasti, and W Arnold, and K P Campbell, and A O Jorgensen
June 1992, Experientia,
R Klietsch, and J M Ervasti, and W Arnold, and K P Campbell, and A O Jorgensen
November 1990, Journal of biochemistry,
R Klietsch, and J M Ervasti, and W Arnold, and K P Campbell, and A O Jorgensen
January 1991, The Journal of cell biology,
R Klietsch, and J M Ervasti, and W Arnold, and K P Campbell, and A O Jorgensen
April 2004, Circulation research,
R Klietsch, and J M Ervasti, and W Arnold, and K P Campbell, and A O Jorgensen
June 2000, Circulation,
R Klietsch, and J M Ervasti, and W Arnold, and K P Campbell, and A O Jorgensen
January 2008, International review of cytology,
R Klietsch, and J M Ervasti, and W Arnold, and K P Campbell, and A O Jorgensen
February 2009, International journal of molecular medicine,
R Klietsch, and J M Ervasti, and W Arnold, and K P Campbell, and A O Jorgensen
March 1994, FEBS letters,
R Klietsch, and J M Ervasti, and W Arnold, and K P Campbell, and A O Jorgensen
May 1970, The American journal of anatomy,
Copied contents to your clipboard!