Dual effects of gastric inhibitory polypeptide on insulin secretion. 1993

E C Opara, and V L Go
Laboratory of Cell Biology and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.

The role of gastric inhibitory polypeptide (GIP) on insulin secretion in the presence of different glucose concentrations has been studied in perifused microdissected murine islets. Insulin secretion was concentration dependent in the presence of glucose alone: Switching the perifusion buffer from 5.5 to 11.1 and 22.2 mM glucose caused an increase in insulin response assessed as the total integrated area under the curve over a 20-min period (6.4 +/- 0.48 and 12.1 +/- 0.58 ng, respectively; p < 0.01, n = 6). If 11.1 mM glucose perifusion in the presence of GIP was preceded by 5.5 mM glucose alone, the integrated insulin secretion/20 min above basal level was attenuated (1.46 +/- 0.10 vs. 0.37 +/- 0.03 ng; p < 0.01, n = 6), and withdrawal of GIP from the perifusion buffer resulted in the restoration of 11.1 mM glucose-stimulated insulin secretion (1.46 +/- 0.10 vs. 1.98 +/- 0.12 ng). If islets were continuously perifused with 11.1 mM glucose, the addition of GIP did not alter insulin secretion. In contrast, the addition of GIP to 22.2 mM glucose perifusion buffer further enhanced the high glucose-induced insulin secretion above basal (12.1 +/- 0.58 vs. 14.5 +/- 0.84 ng; p < 0.05, n = 6). These observations are consistent with a hypothesis that during a low glucose condition, GIP prevents the risk of hypoglycemia by suppressing insulin secretion, while during a high glucose load, glucose-induced insulin stimulation is potentiated by GIP, presumably to prevent hyperglycemia.

UI MeSH Term Description Entries
D007003 Hypoglycemia A syndrome of abnormally low BLOOD GLUCOSE level. Clinical hypoglycemia has diverse etiologies. Severe hypoglycemia eventually lead to glucose deprivation of the CENTRAL NERVOUS SYSTEM resulting in HUNGER; SWEATING; PARESTHESIA; impaired mental function; SEIZURES; COMA; and even DEATH. Fasting Hypoglycemia,Postabsorptive Hypoglycemia,Postprandial Hypoglycemia,Reactive Hypoglycemia,Hypoglycemia, Fasting,Hypoglycemia, Postabsorptive,Hypoglycemia, Postprandial,Hypoglycemia, Reactive
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D005260 Female Females
D005749 Gastric Inhibitory Polypeptide A gastrointestinal peptide hormone of about 43-amino acids. It is found to be a potent stimulator of INSULIN secretion and a relatively poor inhibitor of GASTRIC ACID secretion. Glucose-Dependent Insulinotropic Peptide,Gastric-Inhibitory Polypeptide,Glucose Dependent Insulinotropic Peptide,Glucose-Dependent Insulin-Releasing Peptide,Glucose Dependent Insulin Releasing Peptide,Inhibitory Polypeptide, Gastric,Insulin-Releasing Peptide, Glucose-Dependent,Insulinotropic Peptide, Glucose-Dependent,Peptide, Glucose-Dependent Insulin-Releasing,Peptide, Glucose-Dependent Insulinotropic,Polypeptide, Gastric Inhibitory,Polypeptide, Gastric-Inhibitory
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006943 Hyperglycemia Abnormally high BLOOD GLUCOSE level. Postprandial Hyperglycemia,Hyperglycemia, Postprandial,Hyperglycemias,Hyperglycemias, Postprandial,Postprandial Hyperglycemias
D000078790 Insulin Secretion Production and release of insulin from PANCREATIC BETA CELLS that primarily occurs in response to elevated BLOOD GLUCOSE levels. Secretion, Insulin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

E C Opara, and V L Go
January 1981, Metabolism: clinical and experimental,
E C Opara, and V L Go
January 1990, Life sciences,
E C Opara, and V L Go
February 1978, American journal of surgery,
E C Opara, and V L Go
November 1973, The Journal of clinical endocrinology and metabolism,
E C Opara, and V L Go
March 1979, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
E C Opara, and V L Go
January 1993, Transactions of the Association of American Physicians,
Copied contents to your clipboard!