Measurement of cardiac output by automated single-breath technique, and comparison with thermodilution and Fick methods in patients with cardiac disease. 1993

M R Zenger, and M Brenner, and M Haruno, and D Mahon, and A F Wilson
Department of Medicine, University of California Irvine Medical Center, Orange 92668.

Accurate noninvasive methods are needed for determination of cardiac output. Current methods are generally complex or may be unreliable. A previously described method, based on absorption of acetylene gas during a constant exhalation that enables calculation of cardiac output by estimating pulmonary capillary circulation, is incorporated in a new, automated commercial product (SensorMedics 2200). In this study, cardiac output by single-breath acetylene blood flow measured with this device was compared with the standard thermodilution and direct Fick methods in 20 patients undergoing cardiac or pulmonary artery catheterization. Patients inhaled test gas mixture to total lung capacity and exhaled at a constant rate through an adjustable resistor. Lung volumes and noninvasive acetylene blood flow value were calculated automatically. Correlation between the automated single-breath technique and both thermodilution and Fick cardiac output determinations was very high (correlation coefficients were 0.90 and 0.92, respectively), regression slopes were close to identity (0.98 and 0.90), and bias (-0.39 and -0.79 liter/min) and precision (0.94 and 1.02) were good; when shunt correction was applied, bias was reduced to 0.06 and 0.35 liter/min, respectively. Rapid, accurate, noninvasive measurement of cardiac output was easily obtained using the automated device. This technique may have a wide applicability for noninvasive evaluation of patients with cardiac disease and for monitoring effects of therapeutic interventions.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D011650 Pulmonary Alveoli Small polyhedral outpouchings along the walls of the alveolar sacs, alveolar ducts and terminal bronchioles through the walls of which gas exchange between alveolar air and pulmonary capillary blood takes place. Alveoli, Pulmonary,Alveolus, Pulmonary,Pulmonary Alveolus
D011659 Pulmonary Gas Exchange The exchange of OXYGEN and CARBON DIOXIDE between alveolar air and pulmonary capillary blood that occurs across the BLOOD-AIR BARRIER. Exchange, Pulmonary Gas,Gas Exchange, Pulmonary
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows
D012044 Regression Analysis Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable. Regression Diagnostics,Statistical Regression,Analysis, Regression,Analyses, Regression,Diagnostics, Regression,Regression Analyses,Regression, Statistical,Regressions, Statistical,Statistical Regressions
D012119 Respiration The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration ( Breathing
D002196 Capillaries The minute vessels that connect arterioles and venules. Capillary Beds,Sinusoidal Beds,Sinusoids,Bed, Sinusoidal,Beds, Sinusoidal,Capillary,Capillary Bed,Sinusoid,Sinusoidal Bed
D002302 Cardiac Output The volume of BLOOD passing through the HEART per unit of time. It is usually expressed as liters (volume) per minute so as not to be confused with STROKE VOLUME (volume per beat). Cardiac Outputs,Output, Cardiac,Outputs, Cardiac

Related Publications

M R Zenger, and M Brenner, and M Haruno, and D Mahon, and A F Wilson
February 1975, Biomedicine / [publiee pour l'A.A.I.C.I.G.],
M R Zenger, and M Brenner, and M Haruno, and D Mahon, and A F Wilson
August 1992, The American journal of cardiology,
M R Zenger, and M Brenner, and M Haruno, and D Mahon, and A F Wilson
August 1995, Journal of cardiothoracic and vascular anesthesia,
M R Zenger, and M Brenner, and M Haruno, and D Mahon, and A F Wilson
January 1972, Acta chirurgica Scandinavica,
M R Zenger, and M Brenner, and M Haruno, and D Mahon, and A F Wilson
November 1988, Critical care medicine,
M R Zenger, and M Brenner, and M Haruno, and D Mahon, and A F Wilson
July 2022, Pulmonary circulation,
M R Zenger, and M Brenner, and M Haruno, and D Mahon, and A F Wilson
July 1976, Journal of the National Medical Association,
M R Zenger, and M Brenner, and M Haruno, and D Mahon, and A F Wilson
January 2006, Journal of intensive care medicine,
M R Zenger, and M Brenner, and M Haruno, and D Mahon, and A F Wilson
March 2023, Journal of personalized medicine,
Copied contents to your clipboard!