Structure and function of eukaryotic proprotein processing enzymes of the subtilisin family of serine proteases. 1993

W J Van de Ven, and A J Roebroek, and H L Van Duijnhoven
Laboratory for Molecular Oncology, University of Leuven, Belgium.

Production of a broad spectrum of regulatory proteins in eukaryotes occurs via an intricate cascade of biosynthetic and secretory processes. Often these proteins initially are synthesized as parts of higher molecular weight, but inactive, precursor proteins. Specific endoproteolytic processing of these proproteins is required to generate the regulatory proteins in a mature and biologically active form. Such endoproteolysis generally occurs at cleavage sites consisting of particular sequence motifs of basic amino acids, often paired basic residues. This phenomenon, first observed almost 25 years ago, has intrigued scientists ever since then. Nevertheless, the responsible enzymes remained elusive for long. The first known eukaryotic enzyme with the exquisite cleavage specificity for paired basic amino acid residues was the prohormone processing enzyme kexin (EC 3.4.21.61), a subtilisin-like serine protease that is encoded by the KEX2 gene of yeast Saccharomyces cerevisiae. Recently, a number of kexin-like mammalian proprotein-processing enzymes were discovered. The enzyme furin, which is encoded by the fur gene, was the first and can be considered the prototype of a mammalian subclass of subtilisin-like serine proteases. It is predicted to contain a "prepro" domain, a subtilisin-like catalytic domain, a middle domain, a cysteine-rich region, a transmembrane anchor, and a cytoplasmic domain. Furin is expressed in a wide variety of tissues, perhaps even in all tissues. In all likelihood, it is the enzyme responsible for the proteolytic bioactivation of a wide variety of precursor proteins. Two other novel mammalian proprotein-processing enzymes are PC1 (also known as PC3) and PC2. Some of the protein domains of these enzymes resemble those in kexin and furin, however, there are also differences. The PC1/PC3 and PC2 enzymes exhibit a more restricted expression pattern than furin. It has been suggested that PC1/PC3 and PC2 are involved primarily in the processing of prohormones within the regulated secretory pathway of cells of endocrine and neural tissue. Recently, the coding sequences for two other candidate mammalian proprotein-processing enzymes were identified. They were called PACE4 and PC4. Like that of furin, the tissue distribution of PACE4 is widespread. PC4, however, may represent a candidate for a precursor-processing endoprotease that is specifically expressed in the testicular germ cells. Finally, DNA sequences encoding kexin- and furin-like candidate pro-protein-processing enzymes have been identified in Drosophila melanogaster, Dfur1 and Dfur2 genes; in Xenopus laevis, Xen-14 gene; and in Caenorhabditis elegans, bli-4 gene.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D012697 Serine Endopeptidases Any member of the group of ENDOPEPTIDASES containing at the active site a serine residue involved in catalysis. Serine Endopeptidase,Endopeptidase, Serine,Endopeptidases, Serine

Related Publications

W J Van de Ven, and A J Roebroek, and H L Van Duijnhoven
January 1996, Advances in experimental medicine and biology,
W J Van de Ven, and A J Roebroek, and H L Van Duijnhoven
August 2000, Gene,
W J Van de Ven, and A J Roebroek, and H L Van Duijnhoven
March 1997, Protein science : a publication of the Protein Society,
W J Van de Ven, and A J Roebroek, and H L Van Duijnhoven
January 2016, Postepy biochemii,
W J Van de Ven, and A J Roebroek, and H L Van Duijnhoven
April 2011, Journal of structural biology,
W J Van de Ven, and A J Roebroek, and H L Van Duijnhoven
July 1997, Microbiology (Reading, England),
W J Van de Ven, and A J Roebroek, and H L Van Duijnhoven
February 1998, Seminars in cell & developmental biology,
W J Van de Ven, and A J Roebroek, and H L Van Duijnhoven
October 1997, Molecular microbiology,
W J Van de Ven, and A J Roebroek, and H L Van Duijnhoven
September 2004, Mini reviews in medicinal chemistry,
Copied contents to your clipboard!