Effects of fractionated radiation therapy on human brain tumor multicellular spheroids. 1993

J T Ho, and A Sarkar, and L E Kendall, and T Hoshino, and L J Marton, and D F Deen
Department of Neurological Surgery, School of Medicine, University of California, San Francisco 94143-0520.

We investigated the cytotoxic effects of fractionated radiation therapy on multicellular spheroids of human malignant glioma cell lines U-87 MG, U-251 MG, and U-373 MG. Graded doses of x-rays were administered in 1, 3, 8, 15, and 30 fractions over 15 days. The isoeffect dose for a 1 log cell kill ranged from 4-4.5 Gy for a single fraction to 7-8 Gy for an 8-fraction protocol; no additional dose-sparing was achieved with more fractions. Therefore, the effects of individual doses (1.56 Gy) of the 8-fraction protocol were studied in U-251 MG spheroids. A cell survival assay showed that the first dose of radiation killed 30-50% of the cells; subsequent doses usually killed fewer cells. The cell kill after all 8 doses was about 1.0 log. No consistent relationship between the intracellular glutathione level and fraction number was observed. The 24-hour labeling index of the spheroids did not decrease until after the second fraction. Thus, the higher cell kill of the first dose does not seem to be related to cell cycle synchrony. Multinuclear and mononuclear giant cells were limited almost entirely to the periphery of the spheroids and increased with the number of radiation fractions. We conclude that multicellular spheroids can be used to study the biological effects of fractionated radiation therapy on human brain tumor cells. Although this model cannot be used to evaluate the effect of radiation on normal tissue, it may be useful in developing more effective radiation therapy protocols for human brain tumors.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011879 Radiotherapy Dosage The total amount of radiation absorbed by tissues as a result of radiotherapy. Dosage, Radiotherapy,Dosages, Radiotherapy,Radiotherapy Dosages
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D002449 Cell Aggregation The phenomenon by which dissociated cells intermixed in vitro tend to group themselves with cells of their own type. Aggregation, Cell,Aggregations, Cell,Cell Aggregations
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D005910 Glioma Benign and malignant central nervous system neoplasms derived from glial cells (i.e., astrocytes, oligodendrocytes, and ependymocytes). Astrocytes may give rise to astrocytomas (ASTROCYTOMA) or glioblastoma multiforme (see GLIOBLASTOMA). Oligodendrocytes give rise to oligodendrogliomas (OLIGODENDROGLIOMA) and ependymocytes may undergo transformation to become EPENDYMOMA; CHOROID PLEXUS NEOPLASMS; or colloid cysts of the third ventricle. (From Escourolle et al., Manual of Basic Neuropathology, 2nd ed, p21) Glial Cell Tumors,Malignant Glioma,Mixed Glioma,Glial Cell Tumor,Glioma, Malignant,Glioma, Mixed,Gliomas,Gliomas, Malignant,Gliomas, Mixed,Malignant Gliomas,Mixed Gliomas,Tumor, Glial Cell,Tumors, Glial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

J T Ho, and A Sarkar, and L E Kendall, and T Hoshino, and L J Marton, and D F Deen
June 1984, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology,
J T Ho, and A Sarkar, and L E Kendall, and T Hoshino, and L J Marton, and D F Deen
April 1981, Journal of clinical ultrasound : JCU,
J T Ho, and A Sarkar, and L E Kendall, and T Hoshino, and L J Marton, and D F Deen
May 1989, International journal of radiation oncology, biology, physics,
J T Ho, and A Sarkar, and L E Kendall, and T Hoshino, and L J Marton, and D F Deen
January 1987, Cancer drug delivery,
J T Ho, and A Sarkar, and L E Kendall, and T Hoshino, and L J Marton, and D F Deen
January 1987, Invasion & metastasis,
J T Ho, and A Sarkar, and L E Kendall, and T Hoshino, and L J Marton, and D F Deen
January 1983, Cell biology international reports,
J T Ho, and A Sarkar, and L E Kendall, and T Hoshino, and L J Marton, and D F Deen
August 2004, Current opinion in molecular therapeutics,
J T Ho, and A Sarkar, and L E Kendall, and T Hoshino, and L J Marton, and D F Deen
October 2011, Physical review letters,
J T Ho, and A Sarkar, and L E Kendall, and T Hoshino, and L J Marton, and D F Deen
July 1999, International journal of radiation biology,
J T Ho, and A Sarkar, and L E Kendall, and T Hoshino, and L J Marton, and D F Deen
February 1983, Cancer research,
Copied contents to your clipboard!