Effects of temperature on ADP-ribosylation factor stimulation of cholera toxin activity. 1993

T Murayama, and S C Tsai, and R Adamik, and J Moss, and M Vaughan
Laboratory of Cellular Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892.

The effects of cholera toxin, a secretory product of Vibrio cholerae, result from ADP-ribosylation of the stimulatory guanine nucleotide-binding (Gs) protein of the adenylyl cyclase system. Cholera toxin A subunit (CTA) also uses agmatine, a simple guanidino compound, several proteins unrelated to Gs, and CTA itself as alternative ADP-ribose acceptors. The effects of toxin occur in the jejunum presumably at body core temperature. With agmatine as a model substrate, the optimal temperature for CTA-catalyzed ADP-ribosylation was 25-30 degrees C, and that for CTA-catalyzed auto-ADP-ribosylation was 20-25 degrees C. Both activities were significantly less at 37 degrees C, reflecting lower initial velocities, not heat-inactivation of the toxin. All the transferase activities of CTA are enhanced by ADP-ribosylation factors (ARFs), approximately 20-kDa guanine nucleotide-binding proteins that are ubiquitous in mammalian cells. Phospholipids and a soluble brain ARF, in a GTP-dependent manner, activated toxin NAD:agmatine ADP-ribosyltransferase activity; their simultaneous effect was maximal at physiological temperatures (approximately 37 degrees C). At lower temperatures, the stimulation by ARF was much less. There were similar effects on other toxin-catalyzed reactions, notably, the ADP-ribosylation of Gs alpha and the hydrolysis of NAD. Thus, host factors, such as ARF and phospholipid, synergistically increase cholera toxin activity at 37 degrees C and may be important in toxin action in the mammalian gut.

UI MeSH Term Description Entries
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002308 Cardiolipins Acidic phospholipids composed of two molecules of phosphatidic acid covalently linked to a molecule of glycerol. They occur primarily in mitochondrial inner membranes and in bacterial plasma membranes. They are the main antigenic components of the Wassermann-type antigen that is used in nontreponemal SYPHILIS SERODIAGNOSIS. Cardiolipin,Diphosphatidylglycerol,Diphosphatidylglycerols
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002772 Cholera Toxin An ENTEROTOXIN from VIBRIO CHOLERAE. It consists of two major protomers, the heavy (H) or A subunit and the B protomer which consists of 5 light (L) or B subunits. The catalytic A subunit is proteolytically cleaved into fragments A1 and A2. The A1 fragment is a MONO(ADP-RIBOSE) TRANSFERASE. The B protomer binds cholera toxin to intestinal epithelial cells and facilitates the uptake of the A1 fragment. The A1 catalyzed transfer of ADP-RIBOSE to the alpha subunits of heterotrimeric G PROTEINS activates the production of CYCLIC AMP. Increased levels of cyclic AMP are thought to modulate release of fluid and electrolytes from intestinal crypt cells. Cholera Toxin A,Cholera Toxin B,Cholera Toxin Protomer A,Cholera Toxin Protomer B,Cholera Toxin Subunit A,Cholera Toxin Subunit B,Choleragen,Choleragenoid,Cholera Enterotoxin CT,Cholera Exotoxin,Cholera Toxin A Subunit,Cholera Toxin B Subunit,Procholeragenoid,Enterotoxin CT, Cholera,Exotoxin, Cholera,Toxin A, Cholera,Toxin B, Cholera,Toxin, Cholera
D003902 Detergents Purifying or cleansing agents, usually salts of long-chain aliphatic bases or acids, that exert cleansing (oil-dissolving) and antimicrobial effects through a surface action that depends on possessing both hydrophilic and hydrophobic properties. Cleansing Agents,Detergent Pods,Laundry Detergent Pods,Laundry Pods,Syndet,Synthetic Detergent,Agent, Cleansing,Agents, Cleansing,Cleansing Agent,Detergent,Detergent Pod,Detergent Pod, Laundry,Detergent Pods, Laundry,Detergent, Synthetic,Detergents, Synthetic,Laundry Detergent Pod,Laundry Pod,Pod, Detergent,Pod, Laundry,Pod, Laundry Detergent,Pods, Detergent,Pods, Laundry,Pods, Laundry Detergent,Synthetic Detergents
D006150 Guanine Nucleotides Guanine Nucleotide,Guanosine Phosphates,Nucleotide, Guanine,Nucleotides, Guanine,Phosphates, Guanosine
D000376 Agmatine Decarboxylated arginine, isolated from several plant and animal sources, e.g., pollen, ergot, herring sperm, octopus muscle. 1-Amino-4-guanidinobutane,4-(Aminobutyl)guanidine,1 Amino 4 guanidinobutane
D000494 Allosteric Regulation The modification of the reactivity of ENZYMES by the binding of effectors to sites (ALLOSTERIC SITES) on the enzymes other than the substrate BINDING SITES. Regulation, Allosteric,Allosteric Regulations,Regulations, Allosteric
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

T Murayama, and S C Tsai, and R Adamik, and J Moss, and M Vaughan
April 1994, The Journal of biological chemistry,
T Murayama, and S C Tsai, and R Adamik, and J Moss, and M Vaughan
January 1993, Progress in nucleic acid research and molecular biology,
T Murayama, and S C Tsai, and R Adamik, and J Moss, and M Vaughan
January 1994, Methods in enzymology,
T Murayama, and S C Tsai, and R Adamik, and J Moss, and M Vaughan
January 1991, Methods in enzymology,
T Murayama, and S C Tsai, and R Adamik, and J Moss, and M Vaughan
November 1988, Biochemical and biophysical research communications,
T Murayama, and S C Tsai, and R Adamik, and J Moss, and M Vaughan
December 1990, Biochimica et biophysica acta,
T Murayama, and S C Tsai, and R Adamik, and J Moss, and M Vaughan
November 1981, The Journal of cell biology,
T Murayama, and S C Tsai, and R Adamik, and J Moss, and M Vaughan
January 1988, Biochemical and biophysical research communications,
T Murayama, and S C Tsai, and R Adamik, and J Moss, and M Vaughan
August 1998, The Journal of biological chemistry,
T Murayama, and S C Tsai, and R Adamik, and J Moss, and M Vaughan
January 1979, Journal of supramolecular structure,
Copied contents to your clipboard!