Morphogenesis in Drosophila requires nonmuscle myosin heavy chain function. 1993

P E Young, and A M Richman, and A S Ketchum, and D P Kiehart
Department of Cellular and Developmental Biology, Harvard Biological Laboratories, Harvard University, Cambridge, Massachusetts 02138.

We provide the first link between a known molecular motor and morphogenesis, the fundamental process of cell shape changes and movements that characterizes development throughout phylogeny. By reverse genetics, we generate mutations in the Drosophila conventional nonmuscle myosin (myosin II) heavy chain gene and show that this gene is essential. We demonstrate that these mutations are allelic to previously identified, recessive, embryonic-lethal zipper mutations and thereby identify nonmuscle myosin heavy chain as the zipper gene product. Embryos that lack functional myosin display defects in dorsal closure, head involution, and axon patterning. Analysis of cell morphology and myosin localization during dorsal closure in wild-type and homozygous mutant embryos demonstrates a key role for myosin in the maintenance of cell shape and suggests a model for the involvement of myosin in cell sheet movement during development. Our experiments, in conjunction with the observation that cytokinesis also requires myosin, suggest that the processes of cell shape change in morphogenesis and cell division are intimately and mechanistically related.

UI MeSH Term Description Entries
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004330 Drosophila A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology. Fruit Fly, Drosophila,Drosophila Fruit Flies,Drosophila Fruit Fly,Drosophilas,Flies, Drosophila Fruit,Fly, Drosophila Fruit,Fruit Flies, Drosophila
D005260 Female Females
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests

Related Publications

P E Young, and A M Richman, and A S Ketchum, and D P Kiehart
October 1995, Journal of muscle research and cell motility,
P E Young, and A M Richman, and A S Ketchum, and D P Kiehart
January 2012, Journal of signal transduction,
P E Young, and A M Richman, and A S Ketchum, and D P Kiehart
October 1985, Proceedings of the National Academy of Sciences of the United States of America,
P E Young, and A M Richman, and A S Ketchum, and D P Kiehart
September 2000, Genetics,
P E Young, and A M Richman, and A S Ketchum, and D P Kiehart
January 1998, Nephron,
P E Young, and A M Richman, and A S Ketchum, and D P Kiehart
November 1999, Transplantation proceedings,
P E Young, and A M Richman, and A S Ketchum, and D P Kiehart
May 1993, Developmental biology,
Copied contents to your clipboard!