Localization of adrenergic receptors in guinea pig ileum and rabbit jejunum to cholinergic neurons and to smooth muscle cells. 1977

J Wikberg

The localization of adrenergic receptors mediating a relaxing action was investigated in innervated and denervated longitudinal muscle strips from guinea pig ileum and rabbit jejunum. Denervated preparations were contracted by drugs that had a direct effect on smooth muscle cells, such as acetylcholine and histamine, but not by stimuli acting on cholinergic neurons, such as electrical field stimulation or nicotine. After blockade of beta-adrenoceptors, norepinephrine relaxed the innervated guinea pig ileum contracted by electrical field stimulation, by stimulating alpha-adrenoceptors. Norepinephrine in low concentrations did not relax denervated preparations contracted by agents acting directly on smooth muscle. In high concentrations, it relaxed denervated preparations by a nonadrenergic mechanism, resistant to alpha- and/or beta-receptor blockade, but which was also activated by 1-(3,4-dihydroxyphenyl) ethanol. Phenylephrine only had a weak agonistic effect on the electrically stimulated innervated preparation and did not relax the denervated one. The denervated rabbit intestine contracted by acetylcholine was relaxed by norepinephrine and phenylephrine by stimulation of alpha-adrenoceptors. In the innervated preparations both drugs were more effective in inhibiting contractions induced by electrical field stimulation or eserine than those induced by exogenous acetylcholine. Both the denervated guinea pig and rabbit intestine were relaxed by stimulation of beta-adrenoceptors. It is suggested that in the guinea pig ileum alpha-adrenoceptors mediating relaxation are located only in cholinergic neurons, whereas in rabbit jejunum they are located both in these neurons and in the smooth muscle cells. Beta-adrenoceptors are located in the smooth muscle cells of both organs.

UI MeSH Term Description Entries
D007082 Ileum The distal and narrowest portion of the SMALL INTESTINE, between the JEJUNUM and the ILEOCECAL VALVE of the LARGE INTESTINE.
D007421 Intestine, Small The portion of the GASTROINTESTINAL TRACT between the PYLORUS of the STOMACH and the ILEOCECAL VALVE of the LARGE INTESTINE. It is divisible into three portions: the DUODENUM, the JEJUNUM, and the ILEUM. Small Intestine,Intestines, Small,Small Intestines
D007583 Jejunum The middle portion of the SMALL INTESTINE, between DUODENUM and ILEUM. It represents about 2/5 of the remaining portion of the small intestine below duodenum. Jejunums
D008297 Male Males
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009126 Muscle Relaxation That phase of a muscle twitch during which a muscle returns to a resting position. Muscle Relaxations,Relaxation, Muscle,Relaxations, Muscle
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D009538 Nicotine Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine Bitartrate,Nicotine Tartrate
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010656 Phenylephrine An alpha-1 adrenergic agonist used as a mydriatic, nasal decongestant, and cardiotonic agent. (R)-3-Hydroxy-alpha-((methylamino)methyl)benzenemethanol,Metaoxedrin,Metasympatol,Mezaton,Neo-Synephrine,Neosynephrine,Phenylephrine Hydrochloride,Phenylephrine Tannate,Neo Synephrine,Tannate, Phenylephrine

Related Publications

J Wikberg
January 1991, Acta physiologica et pharmacologica Bulgarica,
J Wikberg
May 2014, American journal of physiology. Gastrointestinal and liver physiology,
J Wikberg
April 1981, Japanese journal of pharmacology,
Copied contents to your clipboard!