Flavin dynamics in reduced flavodoxins. A time-resolved polarized fluorescence study. 1993

R Leenders, and M Kooijman, and A van Hoek, and C Veeger, and A J Visser
Department of Biochemistry, Agricultural University, Wageningen, The Netherlands.

The time-resolved fluorescence and fluorescence anisotropy characteristics of reduced flavin mononucleotide in solution as well as bound in flavodoxins isolated from the bacteria Desulfovibrio gigas, Desulfovibrio vulgaris, Clostridium beijerinckii MP and Megasphaera elsdenii have been examined. All fluorescence and fluorescence anisotropy decays were analyzed by two different methods: (a) least-squares fitting with a sum of exponentials and (b) the maximum entropy method to yield distributed lifetimes and correlation times. The results of both approaches are in excellent agreement. The fluorescence decay of the free as well as protein-bound reduced flavin chromophore is made up of three components. The shortest component proves to be relatively sensitive to the environment and can therefore be used as a diagnostic tool to probe the microenvironment of the reduced isoalloxazine ring system. The other two longer fluorescence lifetime components are insensitive to the chromophore environment and seem therefore to be related to intrinsic, photophysical properties of the reduced chromophore. Fluorescence anisotropy decays show that the flavin mononucleotide in all four reduced flavodoxins is immobilized within the protein matrix, as indicated by the recovery of a single rotational correlation time, reflecting the rotation of the whole protein. No indications are found that rapid structural fluctuations occur in reduced flavodoxins, and the mechanism of electron transfer from flavodoxin to other redox proteins seems to involve immobilized reduced flavin.

UI MeSH Term Description Entries
D003013 Clostridium A genus of motile or nonmotile gram-positive bacteria of the family Clostridiaceae. Many species have been identified with some being pathogenic. They occur in water, soil, and in the intestinal tract of humans and lower animals.
D003901 Desulfovibrio A genus of gram-negative, anaerobic, rod-shaped bacteria capable of reducing sulfur compounds to hydrogen sulfide. Organisms are isolated from anaerobic mud of fresh and salt water, animal intestines, manure, and feces.
D005415 Flavins Derivatives of the dimethylisoalloxazine (7,8-dimethylbenzo[g]pteridine-2,4(3H,10H)-dione) skeleton. Flavin derivatives serve an electron transfer function as ENZYME COFACTORS in FLAVOPROTEINS.
D005418 Flavodoxin A low-molecular-weight (16,000) iron-free flavoprotein containing one molecule of flavin mononucleotide (FMN) and isolated from bacteria grown on an iron-deficient medium. It can replace ferredoxin in all the electron-transfer functions in which the latter is known to serve in bacterial cells.
D005454 Fluorescence Polarization Measurement of the polarization of fluorescent light from solutions or microscopic specimens. It is used to provide information concerning molecular size, shape, and conformation, molecular anisotropy, electronic energy transfer, molecular interaction, including dye and coenzyme binding, and the antigen-antibody reaction. Anisotropy, Fluorescence,Fluorescence Anisotropy,Polarization, Fluorescence,Anisotropies, Fluorescence,Fluorescence Anisotropies,Fluorescence Polarizations,Polarizations, Fluorescence
D005486 Flavin Mononucleotide A coenzyme for a number of oxidative enzymes including NADH DEHYDROGENASE. It is the principal form in which RIBOFLAVIN is found in cells and tissues. FMN,Flavin Mononucleotide Disodium Salt,Flavin Mononucleotide Monosodium Salt,Flavin Mononucleotide Monosodium Salt, Dihydrate,Flavin Mononucleotide Sodium Salt,Riboflavin 5'-Monophosphate,Riboflavin 5'-Phosphate,Riboflavin Mononucleotide,Sodium Riboflavin Phosphate,5'-Monophosphate, Riboflavin,5'-Phosphate, Riboflavin,Mononucleotide, Flavin,Mononucleotide, Riboflavin,Phosphate, Sodium Riboflavin,Riboflavin 5' Monophosphate,Riboflavin 5' Phosphate,Riboflavin Phosphate, Sodium
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

R Leenders, and M Kooijman, and A van Hoek, and C Veeger, and A J Visser
December 1995, Journal of fluorescence,
R Leenders, and M Kooijman, and A van Hoek, and C Veeger, and A J Visser
December 1993, European journal of biochemistry,
R Leenders, and M Kooijman, and A van Hoek, and C Veeger, and A J Visser
August 1974, FEBS letters,
R Leenders, and M Kooijman, and A van Hoek, and C Veeger, and A J Visser
January 1990, European biophysics journal : EBJ,
R Leenders, and M Kooijman, and A van Hoek, and C Veeger, and A J Visser
December 1984, Photochemistry and photobiology,
R Leenders, and M Kooijman, and A van Hoek, and C Veeger, and A J Visser
August 1992, Biochemistry,
R Leenders, and M Kooijman, and A van Hoek, and C Veeger, and A J Visser
May 1971, Biochimica et biophysica acta,
R Leenders, and M Kooijman, and A van Hoek, and C Veeger, and A J Visser
October 1988, Photochemistry and photobiology,
R Leenders, and M Kooijman, and A van Hoek, and C Veeger, and A J Visser
May 1987, Biophysical chemistry,
R Leenders, and M Kooijman, and A van Hoek, and C Veeger, and A J Visser
March 1994, Biochemistry,
Copied contents to your clipboard!