Pulmonary artery hemodynamics in primary pulmonary hypertension. 1993

W K Laskey, and V A Ferrari, and H I Palevsky, and W G Kussmaul
Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia.

OBJECTIVE The present investigation compared and contrasted steady and pulsatile pulmonary hemodynamics at rest and during exercise in patients with primary pulmonary hypertension and normal control subjects. BACKGROUND A complete description of the relation between pressure and flow in the pulmonary circulation includes both steady and pulsatile hemodynamic behavior. Patients with primary pulmonary hypertension provide a unique opportunity to study the effects of primary alterations in pulmonary vasculature on pulmonary artery vascular hydraulic load. METHODS Catheter tip pressure and velocity recordings from the main pulmonary artery in 8 patients with primary pulmonary hypertension and 10 control subjects were used to derive the pulmonary artery input impedance spectrum and the extent of pulse wave reflection at rest and during exercise. RESULTS As expected, in patients with primary pulmonary hypertension, mean pulmonary artery pressure (50 +/- 10 mm Hg) and pulmonary vascular resistance (880 +/- 446 dynes.s.cm-5) were markedly elevated at rest and remained so during exercise (mean pressure 71 +/- 15 mm Hg, mean resistance 750 +/- 530 dynes.s.cm-5). Pulmonary artery characteristic impedance was elevated at rest and did not change with exercise (rest 55 +/- 25 dynes.s.cm-5; exercise 66 +/- 33 dynes.s.cm-5). Measures of arterial wave reflection indicated that the extent of wave reflection in the pulmonary bed in those with primary pulmonary hypertension is large at rest (reflection coefficient 0.89 +/- 0.09) and that the composite reflected wave arrived during the midportion of right ventricular ejection. Although the extent of wave reflection decreased with exercise (reflection coefficient 0.81 +/- 0.10, p < 0.05), the magnitude and timing of these reflections remained adverse. Furthermore, in patients with primary pulmonary hypertension, the stroke volume response to exercise was strongly related to rest levels of pulmonary artery diastolic pressure, pulmonary vascular resistance and the reflection factor, whereas no such relation was found in the control subjects. CONCLUSIONS In addition to the expected abnormalities in steady measures of pulmonary artery hemodynamics at rest in patients with primary pulmonary hypertension, rest and exercise measures of oscillatory behavior (characteristic impedance and pulse wave reflection) are perturbed. Measures of steady and pulsatile behavior, particularly wave reflection, appear to have an important role in the exercise response of these patients.

UI MeSH Term Description Entries
D006976 Hypertension, Pulmonary Increased VASCULAR RESISTANCE in the PULMONARY CIRCULATION, usually secondary to HEART DISEASES or LUNG DISEASES. Pulmonary Hypertension
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D011651 Pulmonary Artery The short wide vessel arising from the conus arteriosus of the right ventricle and conveying unaerated blood to the lungs. Arteries, Pulmonary,Artery, Pulmonary,Pulmonary Arteries
D011652 Pulmonary Circulation The circulation of the BLOOD through the LUNGS. Pulmonary Blood Flow,Respiratory Circulation,Circulation, Pulmonary,Circulation, Respiratory,Blood Flow, Pulmonary,Flow, Pulmonary Blood,Pulmonary Blood Flows
D011673 Pulsatile Flow Rhythmic, intermittent propagation of a fluid through a BLOOD VESSEL or piping system, in contrast to constant, smooth propagation, which produces laminar flow. Flow, Pulsating,Perfusion, Pulsatile,Flow, Pulsatile,Flows, Pulsatile,Flows, Pulsating,Perfusions, Pulsatile,Pulsatile Flows,Pulsatile Perfusion,Pulsatile Perfusions,Pulsating Flow,Pulsating Flows
D001783 Blood Flow Velocity A value equal to the total volume flow divided by the cross-sectional area of the vascular bed. Blood Flow Velocities,Flow Velocities, Blood,Flow Velocity, Blood,Velocities, Blood Flow,Velocity, Blood Flow
D002407 Catheterization, Swan-Ganz Placement of a balloon-tipped catheter into the pulmonary artery through the antecubital, subclavian, and sometimes the femoral vein. It is used to measure pulmonary artery pressure and pulmonary artery wedge pressure which reflects left atrial pressure and left ventricular end-diastolic pressure. The catheter is threaded into the right atrium, the balloon is inflated and the catheter follows the blood flow through the tricuspid valve into the right ventricle and out into the pulmonary artery. Catheterization, Pulmonary Artery,Swan-Ganz Catheterization,Pulmonary Artery Catheterization,Artery Catheterization, Pulmonary,Artery Catheterizations, Pulmonary,Catheterization, Swan Ganz,Catheterizations, Pulmonary Artery,Pulmonary Artery Catheterizations,Swan Ganz Catheterization
D005080 Exercise Test Controlled physical activity which is performed in order to allow assessment of physiological functions, particularly cardiovascular and pulmonary, but also aerobic capacity. Maximal (most intense) exercise is usually required but submaximal exercise is also used. Arm Ergometry Test,Bicycle Ergometry Test,Cardiopulmonary Exercise Testing,Exercise Testing,Step Test,Stress Test,Treadmill Test,Cardiopulmonary Exercise Test,EuroFit Tests,Eurofit Test Battery,European Fitness Testing Battery,Fitness Testing,Physical Fitness Testing,Arm Ergometry Tests,Bicycle Ergometry Tests,Cardiopulmonary Exercise Tests,Ergometry Test, Arm,Ergometry Test, Bicycle,Ergometry Tests, Arm,Ergometry Tests, Bicycle,EuroFit Test,Eurofit Test Batteries,Exercise Test, Cardiopulmonary,Exercise Testing, Cardiopulmonary,Exercise Tests,Exercise Tests, Cardiopulmonary,Fitness Testing, Physical,Fitness Testings,Step Tests,Stress Tests,Test Battery, Eurofit,Test, Arm Ergometry,Test, Bicycle Ergometry,Test, Cardiopulmonary Exercise,Test, EuroFit,Test, Exercise,Test, Step,Test, Stress,Test, Treadmill,Testing, Cardiopulmonary Exercise,Testing, Exercise,Testing, Fitness,Testing, Physical Fitness,Tests, Arm Ergometry,Tests, Bicycle Ergometry,Tests, Cardiopulmonary Exercise,Tests, EuroFit,Tests, Exercise,Tests, Step,Tests, Stress,Tests, Treadmill,Treadmill Tests
D005260 Female Females

Related Publications

W K Laskey, and V A Ferrari, and H I Palevsky, and W G Kussmaul
July 1979, Japanese heart journal,
W K Laskey, and V A Ferrari, and H I Palevsky, and W G Kussmaul
February 1977, Nihon Kyobu Shikkan Gakkai zasshi,
W K Laskey, and V A Ferrari, and H I Palevsky, and W G Kussmaul
August 1987, American heart journal,
W K Laskey, and V A Ferrari, and H I Palevsky, and W G Kussmaul
July 1983, Kokyu to junkan. Respiration & circulation,
W K Laskey, and V A Ferrari, and H I Palevsky, and W G Kussmaul
January 1953, Bulletins et memoires de la Societe medicale des hopitaux de Paris,
W K Laskey, and V A Ferrari, and H I Palevsky, and W G Kussmaul
November 2000, Polskie Archiwum Medycyny Wewnetrznej,
W K Laskey, and V A Ferrari, and H I Palevsky, and W G Kussmaul
April 1975, Polskie Archiwum Medycyny Wewnetrznej,
W K Laskey, and V A Ferrari, and H I Palevsky, and W G Kussmaul
September 1988, Journal of cardiology,
W K Laskey, and V A Ferrari, and H I Palevsky, and W G Kussmaul
February 1999, American journal of respiratory and critical care medicine,
W K Laskey, and V A Ferrari, and H I Palevsky, and W G Kussmaul
October 1987, The American review of respiratory disease,
Copied contents to your clipboard!