gamma-Interferon plays a key role in T-cell-induced tumor regression. 1993

T M Tuttle, and C W McCrady, and T H Inge, and M Salour, and H D Bear
Department of Surgery, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298.

Recent studies have demonstrated that noncytolytic T-cells can mediate regression of murine tumors. In this report, we demonstrate that MCA-105 tumor-draining lymph node cells (DLN) activated with the protein kinase C activator, bryostatin 1, plus a calcium ionophore are capable of inducing specific tumor regression in vivo when adoptively transferred to mice with established metastases. However, these activated DLN cells lack in vitro cytotoxicity against autologous tumor. Antibody against gamma-interferon (IFN-gamma) markedly inhibited the therapeutic efficacy of these activated DLN cells. Anti-tumor necrosis factor produced a statistically significant but weaker inhibition of tumor regression. IFN-gamma, but not tumor necrosis factor alpha, could be shown to be secreted by activated DLN cells in vitro in response to specific tumor. Secretion of IFN-gamma was primarily a function of CD8+ T-cells. IFN-gamma was not directly cytotoxic to sarcoma cells in vitro. Moreover, tumor cells incubated with IFN-gamma were not more susceptible to lysis by activated DLN cells. However, recombinant murine IFN-gamma had a significant antiproliferative effect against MCA-105 tumor cells when tested in a [3H]thymidine uptake assay. Similarly, supernatants obtained from DLN/autologous tumor cocultures markedly inhibited MCA-105 proliferation; this antiproliferative effect was abrogated by the addition of anti-IFN-gamma antibody to the cultures. These results suggest that secretion of IFN-gamma by adoptively transferred DLN cells plays an essential role in tumor rejection. The dominant effect of IFN-gamma may be its demonstrated antiproliferative activity.

UI MeSH Term Description Entries
D007074 Immunoglobulin G The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D007783 Lactones Cyclic esters of hydroxy carboxylic acids, containing a 1-oxacycloalkan-2-one structure. Large cyclic lactones of over a dozen atoms are MACROLIDES. Lactone
D008175 Lung Neoplasms Tumors or cancer of the LUNG. Cancer of Lung,Lung Cancer,Pulmonary Cancer,Pulmonary Neoplasms,Cancer of the Lung,Neoplasms, Lung,Neoplasms, Pulmonary,Cancer, Lung,Cancer, Pulmonary,Cancers, Lung,Cancers, Pulmonary,Lung Cancers,Lung Neoplasm,Neoplasm, Lung,Neoplasm, Pulmonary,Pulmonary Cancers,Pulmonary Neoplasm
D008198 Lymph Nodes They are oval or bean shaped bodies (1 - 30 mm in diameter) located along the lymphatic system. Lymph Node,Node, Lymph,Nodes, Lymph
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008748 Methylcholanthrene A carcinogen that is often used in experimental cancer studies. 20-Methylcholanthrene,3-Methylcholanthrene,20 Methylcholanthrene,3 Methylcholanthrene
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D005260 Female Females
D000276 Adjuvants, Immunologic Substances that augment, stimulate, activate, potentiate, or modulate the immune response at either the cellular or humoral level. The classical agents (Freund's adjuvant, BCG, Corynebacterium parvum, et al.) contain bacterial antigens. Some are endogenous (e.g., histamine, interferon, transfer factor, tuftsin, interleukin-1). Their mode of action is either non-specific, resulting in increased immune responsiveness to a wide variety of antigens, or antigen-specific, i.e., affecting a restricted type of immune response to a narrow group of antigens. The therapeutic efficacy of many biological response modifiers is related to their antigen-specific immunoadjuvanticity. Immunoactivators,Immunoadjuvant,Immunoadjuvants,Immunologic Adjuvant,Immunopotentiator,Immunopotentiators,Immunostimulant,Immunostimulants,Adjuvant, Immunologic,Adjuvants, Immunological,Immunologic Adjuvants,Immunological Adjuvant,Adjuvant, Immunological,Immunological Adjuvants

Related Publications

T M Tuttle, and C W McCrady, and T H Inge, and M Salour, and H D Bear
November 1996, Bone marrow transplantation,
T M Tuttle, and C W McCrady, and T H Inge, and M Salour, and H D Bear
December 1990, The Journal of experimental medicine,
T M Tuttle, and C W McCrady, and T H Inge, and M Salour, and H D Bear
January 1985, La Ricerca in clinica e in laboratorio,
T M Tuttle, and C W McCrady, and T H Inge, and M Salour, and H D Bear
October 2006, The Journal of experimental medicine,
T M Tuttle, and C W McCrady, and T H Inge, and M Salour, and H D Bear
August 1996, Gastroenterology,
T M Tuttle, and C W McCrady, and T H Inge, and M Salour, and H D Bear
July 2000, The Journal of clinical investigation,
T M Tuttle, and C W McCrady, and T H Inge, and M Salour, and H D Bear
March 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
T M Tuttle, and C W McCrady, and T H Inge, and M Salour, and H D Bear
July 2008, Journal of leukocyte biology,
T M Tuttle, and C W McCrady, and T H Inge, and M Salour, and H D Bear
January 2016, Journal of immunology research and therapy,
T M Tuttle, and C W McCrady, and T H Inge, and M Salour, and H D Bear
May 2019, PLoS pathogens,
Copied contents to your clipboard!