Differential effects of brefeldin A on transport of secretory and lysosomal proteins. 1993

G J Strous, and P van Kerkhof, and G van Meer, and S Rijnboutt, and W Stoorvogel
Laboratory of Cell Biology, AZU-H02.314, University of Utrecht, The Netherlands.

Brefeldin A (BFA) rapidly blocks anterograde exocytotic transport through the Golgi complex. Sustained retrograde traffic induced by brefeldin A causes redistribution of constituents of the Golgi, but not the trans-Golgi network (TGN), to the endoplasmic reticulum (ER). In the present study on HepG2 cells, we have observed a differential effect of BFA on transport from the TGN of two soluble proteins: alpha 1-antitrypsin as a representative of secretory proteins and cathepsin D as a prototype of lysosomal enzymes. The Golgi complex of HepG2 cells is sensitive to BFA, as within minutes after its addition nearly all activity of three resident Golgi enzymes was recovered in the ER as monitored by cell fractionation on sucrose density gradients. In accordance with this, "high mannose"-glycosylated alpha 1-antitrypsin was retained in or transported back to the ER. "Complex"-glycosylated alpha 1-antitrypsin was neither secreted into the medium nor transported back to the ER. Most of it was retained in vesicles with the buoyant density of Golgi. These vesicles contained the fluid phase endocytotic marker horseradish peroxidase when this was added to the culture medium prior to the BFA, suggesting that the vesicles derived from the TGN. After BFA addition, the compartment became inaccessible to endocytosed horseradish peroxidase. In contrast to blocking transport of complex alpha 1-antitrypsin, BFA did not affect processing of newly synthesized complex-glycosylated procathepsin D (53 kDa) to the mature 31-kDa form. Neither did it interfere with processing of endocytosed procathepsin D. That the mature cathepsin D had indeed reached the lysosomes was verified by Percoll density gradient fractionation. In conclusion, in HepG2 cells, BFA induces two blocks in the secretory pathway: one at the level of the ER-Golgi juncture and the other in the TGN. In contrast, transport from the Golgi complex to the lysosomes and from the plasma membrane to the lysosomes continued.

UI MeSH Term Description Entries
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D002402 Cathepsin D An intracellular proteinase found in a variety of tissue. It has specificity similar to but narrower than that of pepsin A. The enzyme is involved in catabolism of cartilage and connective tissue. EC 3.4.23.5. (Formerly EC 3.4.4.23).
D002451 Cell Compartmentation A partitioning within cells due to the selectively permeable membranes which enclose each of the separate parts, e.g., mitochondria, lysosomes, etc. Cell Compartmentations,Compartmentation, Cell,Compartmentations, Cell
D003517 Cyclopentanes A group of alicyclic hydrocarbons with the general formula R-C5H9. Cyclopentadiene,Cyclopentadienes,Cyclopentene,Cyclopentenes,Cyclopentane
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000515 alpha 1-Antitrypsin Plasma glycoprotein member of the serpin superfamily which inhibits TRYPSIN; NEUTROPHIL ELASTASE; and other PROTEOLYTIC ENZYMES. Trypsin Inhibitor, alpha 1-Antitrypsin,alpha 1-Protease Inhibitor,alpha 1-Proteinase Inhibitor,A1PI,Prolastin,Serpin A1,Zemaira,alpha 1 Antiprotease,alpha 1-Antiproteinase,1-Antiproteinase, alpha,Antiprotease, alpha 1,Inhibitor, alpha 1-Protease,Inhibitor, alpha 1-Proteinase,Trypsin Inhibitor, alpha 1 Antitrypsin,alpha 1 Antiproteinase,alpha 1 Antitrypsin,alpha 1 Protease Inhibitor,alpha 1 Proteinase Inhibitor
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

G J Strous, and P van Kerkhof, and G van Meer, and S Rijnboutt, and W Stoorvogel
August 1986, The Journal of biological chemistry,
G J Strous, and P van Kerkhof, and G van Meer, and S Rijnboutt, and W Stoorvogel
February 1990, Cell structure and function,
G J Strous, and P van Kerkhof, and G van Meer, and S Rijnboutt, and W Stoorvogel
March 1994, Biochimica et biophysica acta,
G J Strous, and P van Kerkhof, and G van Meer, and S Rijnboutt, and W Stoorvogel
June 1992, The Journal of biological chemistry,
G J Strous, and P van Kerkhof, and G van Meer, and S Rijnboutt, and W Stoorvogel
November 1985, The Journal of cell biology,
G J Strous, and P van Kerkhof, and G van Meer, and S Rijnboutt, and W Stoorvogel
October 1995, European journal of cell biology,
G J Strous, and P van Kerkhof, and G van Meer, and S Rijnboutt, and W Stoorvogel
April 1992, Hepatology (Baltimore, Md.),
G J Strous, and P van Kerkhof, and G van Meer, and S Rijnboutt, and W Stoorvogel
April 1997, Acta virologica,
G J Strous, and P van Kerkhof, and G van Meer, and S Rijnboutt, and W Stoorvogel
January 1993, The Biochemical journal,
Copied contents to your clipboard!