Inhibition of dysthrombins Quick I and II by heparin cofactor II and antithrombin. 1993

J E Phillips, and R A Shirk, and H C Whinna, and R A Henriksen, and F C Church
Center for Thrombosis and Hemostasis, University of North Carolina School of Medicine, Chapel Hill 27599-7035.

Heparin cofactor II and antithrombin are plasma serine proteinase inhibitors whose ability to inhibit alpha-thrombin is accelerated by glycosaminoglycans. Dysfunctional thrombin mutants Quick I (Arg67-->Cys) and Quick II (Gly226-->Val) were used to further compare heparin cofactor II and antithrombin interactions. Quick I, Quick II, and alpha-thrombin were eluted at the same salt concentration from heparin-Sepharose suggesting that the putative heparin-binding site (also termed anion binding exosite-II) is functional. Antithrombin yielded similar inhibition rates for Quick I and alpha-thrombin in the absence or presence of various amounts of heparin. Also, Quick I was inhibited similarly to alpha-thrombin by heparin cofactor II in the absence of glycosaminoglycan. In contrast, glycosaminoglycan-accelerated Quick I inhibition by heparin cofactor II was greatly reduced indicating that anion binding exosite-I (where the mutation occurs in Quick I) is critical for increased inhibition by heparin cofactor II. We also found that heparin cofactor II formed a SDS-resistant bimolecular complex with Quick II and alpha-thrombin at similar rates and the rate of complex formation was accelerated in the presence of glycosaminoglycans. A three-dimensional molecular model of the Quick II active site compared to alpha-thrombin suggested that the heparin cofactor II Leu-Ser-reactive site sequence (P1-P1') is a compatible "pseudosubstrate" in contrast to the Arg-Ser sequence found in antithrombin. The importance of heparin cofactor II as a thrombin regulator will depend upon its ability to interact with glycosaminoglycans and the functional availability of thrombin exosites.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D006493 Heparin A highly acidic mucopolysaccharide formed of equal parts of sulfated D-glucosamine and D-glucuronic acid with sulfaminic bridges. The molecular weight ranges from six to twenty thousand. Heparin occurs in and is obtained from liver, lung, mast cells, etc., of vertebrates. Its function is unknown, but it is used to prevent blood clotting in vivo and vitro, in the form of many different salts. Heparinic Acid,alpha-Heparin,Heparin Sodium,Liquaemin,Sodium Heparin,Unfractionated Heparin,Heparin, Sodium,Heparin, Unfractionated,alpha Heparin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000991 Antithrombins Endogenous factors and drugs that directly inhibit the action of THROMBIN, usually by blocking its enzymatic activity. They are distinguished from INDIRECT THROMBIN INHIBITORS, such as HEPARIN, which act by enhancing the inhibitory effects of antithrombins. Antithrombin,Direct Antithrombin,Direct Antithrombins,Direct Thrombin Inhibitor,Direct Thrombin Inhibitors,Antithrombin, Direct,Antithrombins, Direct,Inhibitor, Direct Thrombin,Thrombin Inhibitor, Direct,Thrombin Inhibitors, Direct
D013917 Thrombin An enzyme formed from PROTHROMBIN that converts FIBRINOGEN to FIBRIN. Thrombase,Thrombin JMI,Thrombin-JMI,Thrombinar,Thrombostat,alpha-Thrombin,beta,gamma-Thrombin,beta-Thrombin,gamma-Thrombin,JMI, Thrombin

Related Publications

J E Phillips, and R A Shirk, and H C Whinna, and R A Henriksen, and F C Church
March 1995, Thrombosis and haemostasis,
J E Phillips, and R A Shirk, and H C Whinna, and R A Henriksen, and F C Church
February 1997, Biomaterials,
J E Phillips, and R A Shirk, and H C Whinna, and R A Henriksen, and F C Church
February 1985, Rinsho byori. The Japanese journal of clinical pathology,
J E Phillips, and R A Shirk, and H C Whinna, and R A Henriksen, and F C Church
November 1976, The Journal of biological chemistry,
J E Phillips, and R A Shirk, and H C Whinna, and R A Henriksen, and F C Church
May 1990, Thrombosis research,
J E Phillips, and R A Shirk, and H C Whinna, and R A Henriksen, and F C Church
November 2000, FEBS letters,
J E Phillips, and R A Shirk, and H C Whinna, and R A Henriksen, and F C Church
September 1983, The Journal of clinical investigation,
J E Phillips, and R A Shirk, and H C Whinna, and R A Henriksen, and F C Church
July 1974, The Journal of biological chemistry,
J E Phillips, and R A Shirk, and H C Whinna, and R A Henriksen, and F C Church
January 1976, Methods in enzymology,
J E Phillips, and R A Shirk, and H C Whinna, and R A Henriksen, and F C Church
February 1975, Thrombosis et diathesis haemorrhagica,
Copied contents to your clipboard!