Nucleotide sequence and characterization of Rhizobium meliloti nodulation competitiveness genes nfe. 1993

M J Soto, and A Zorzano, and J Mercado-Blanco, and V Lepek, and J Olivares, and N Toro
Departamento de MicrobiologĂ­a CSIC, Granada, Spain.

Rhizobium meliloti large plasmid pRmeGR4b carries the nodulation competitiveness locus nfe responsible for the nodulation efficiency and competitive ability of strain GR4 on alfalfa roots. We report here the nucleotide sequence and characterization of a 3345 base-pair DNA section of the nfe region. Sequence analysis revealed four open reading frames (ORFs), two of them with rightward polarity, termed nfe1 and nfe2, are preceded by functional nif consensus sequences and NifA-binding motifs. An additional, NifA-independent, transcriptional start site for nfe1 was also found. Two other ORFs with leftward polarity, designated ORFA and ORFB, were identified upstream from nfe1 and nfe2 but no nif consensus sequences were found. However, expression of ORFA might be indirectly coupled to the NifA-NtrA regulatory network. The gene products of nfe1 and nfe2 were identified using in vitro transcription/translation and bacteriophage T7 RNA polymerase/promoter system, respectively. A high degree of homology between the amino terminal domain of Nfe1 and the nifH gene product was found. In addition, nfe1 shows homology with the upstream non-coding DNA region of the fixABCX operon. Furthermore, the putative ORFB encoded protein contains a helix-turn-helix motif that resembles the DNA-binding consensus sequence proposed for many prokaryotic regulatory proteins.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009586 Nitrogen Fixation The process in certain BACTERIA; FUNGI; and CYANOBACTERIA converting free atmospheric NITROGEN to biologically usable forms of nitrogen, such as AMMONIA; NITRATES; and amino compounds. Diazotrophy,Diazotrophic Activity,Dinitrogen Fixation,N2 Fixation,Activities, Diazotrophic,Activity, Diazotrophic,Diazotrophic Activities,Fixation, Dinitrogen,Fixation, N2,Fixation, Nitrogen
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base
D016366 Open Reading Frames A sequence of successive nucleotide triplets that are read as CODONS specifying AMINO ACIDS and begin with an INITIATOR CODON and end with a stop codon (CODON, TERMINATOR). ORFs,Protein Coding Region,Small Open Reading Frame,Small Open Reading Frames,sORF,Unassigned Reading Frame,Unassigned Reading Frames,Unidentified Reading Frame,Coding Region, Protein,Frame, Unidentified Reading,ORF,Open Reading Frame,Protein Coding Regions,Reading Frame, Open,Reading Frame, Unassigned,Reading Frame, Unidentified,Region, Protein Coding,Unidentified Reading Frames

Related Publications

M J Soto, and A Zorzano, and J Mercado-Blanco, and V Lepek, and J Olivares, and N Toro
December 1984, Nucleic acids research,
M J Soto, and A Zorzano, and J Mercado-Blanco, and V Lepek, and J Olivares, and N Toro
September 1986, Nucleic acids research,
M J Soto, and A Zorzano, and J Mercado-Blanco, and V Lepek, and J Olivares, and N Toro
January 1991, Archives of microbiology,
M J Soto, and A Zorzano, and J Mercado-Blanco, and V Lepek, and J Olivares, and N Toro
June 1985, DNA (Mary Ann Liebert, Inc.),
M J Soto, and A Zorzano, and J Mercado-Blanco, and V Lepek, and J Olivares, and N Toro
January 1989, Molecular plant-microbe interactions : MPMI,
M J Soto, and A Zorzano, and J Mercado-Blanco, and V Lepek, and J Olivares, and N Toro
June 1985, Applied and environmental microbiology,
M J Soto, and A Zorzano, and J Mercado-Blanco, and V Lepek, and J Olivares, and N Toro
October 1985, Journal of bacteriology,
M J Soto, and A Zorzano, and J Mercado-Blanco, and V Lepek, and J Olivares, and N Toro
September 1992, Journal of bacteriology,
M J Soto, and A Zorzano, and J Mercado-Blanco, and V Lepek, and J Olivares, and N Toro
October 1987, Genetics,
M J Soto, and A Zorzano, and J Mercado-Blanco, and V Lepek, and J Olivares, and N Toro
April 1986, Journal of bacteriology,
Copied contents to your clipboard!