Differences in dynamic autoregulation of renal blood flow between SHR and WKY rats. 1993

Y M Chen, and N H Holstein-Rathlou
Department of Physiology and Biophysics, University of Southern California School of Medicine, Los Angeles 90033.

In halothane-anesthetized Wistar-Kyoto (WKY) rats the single-nephron blood flow and the proximal tubule pressure oscillate at a frequency of 35-50 mHz because of the operation of the tubuloglomerular feedback (TGF) mechanism. In spontaneously hypertensive rats (SHR) the oscillations are replaced by chaotic fluctuations. We sought to determine whether this change was associated with a change in the dynamic autoregulation of renal blood flow. In halothane-anesthetized 250- to 320-g SHR and WKY rats, renal blood flow was measured during "white noise" forcing of arterial blood pressure. The frequency response of renal vascular admittance was estimated by the method of autoregressive-moving averages. In the frequency band below 60-70 mHz there was a significant difference in the transfer functions between the two strains of rats. This was due mainly to an increased phase difference, but also to a decreased magnitude of the admittance in SHR at frequencies below 20-30 mHz. Above 70 mHz there was no significant difference in the transfer functions. Because TGF is active in the low frequency band (below approximately 100 mHz), whereas the myogenic mechanism also acts in the higher frequency band, we conclude that the change in the dynamics of TGF leads to a change in the dynamic autoregulation of renal blood flow between SHR and WKY rats. This change results in a more efficient dynamic autoregulation of renal blood flow in the SHR compared with the WKY rats. The functional consequences of this, in terms of the regulation of salt and water excretion, are not presently known.

UI MeSH Term Description Entries
D008297 Male Males
D008955 Models, Cardiovascular Theoretical representations that simulate the behavior or activity of the cardiovascular system, processes, or phenomena; includes the use of mathematical equations, computers and other electronic equipment. Cardiovascular Model,Cardiovascular Models,Model, Cardiovascular
D011918 Rats, Inbred SHR A strain of Rattus norvegicus with elevated blood pressure used as a model for studying hypertension and stroke. Rats, Spontaneously Hypertensive,Rats, SHR,Inbred SHR Rat,Inbred SHR Rats,Rat, Inbred SHR,Rat, SHR,Rat, Spontaneously Hypertensive,SHR Rat,SHR Rat, Inbred,SHR Rats,SHR Rats, Inbred,Spontaneously Hypertensive Rat,Spontaneously Hypertensive Rats
D011921 Rats, Inbred WKY A strain of Rattus norvegicus used as a normotensive control for the spontaneous hypertensive rats (SHR). Rats, Wistar Kyoto,Wistar Kyoto Rat,Rats, WKY,Inbred WKY Rat,Inbred WKY Rats,Kyoto Rat, Wistar,Rat, Inbred WKY,Rat, WKY,Rat, Wistar Kyoto,WKY Rat,WKY Rat, Inbred,WKY Rats,WKY Rats, Inbred,Wistar Kyoto Rats
D012079 Renal Circulation The circulation of the BLOOD through the vessels of the KIDNEY. Kidney Circulation,Renal Blood Flow,Circulation, Kidney,Circulation, Renal,Blood Flow, Renal,Flow, Renal Blood
D005583 Fourier Analysis Analysis based on the mathematical function first formulated by Jean-Baptiste-Joseph Fourier in 1807. The function, known as the Fourier transform, describes the sinusoidal pattern of any fluctuating pattern in the physical world in terms of its amplitude and its phase. It has broad applications in biomedicine, e.g., analysis of the x-ray crystallography data pivotal in identifying the double helical nature of DNA and in analysis of other molecules, including viruses, and the modified back-projection algorithm universally used in computerized tomography imaging, etc. (From Segen, The Dictionary of Modern Medicine, 1992) Fourier Series,Fourier Transform,Analysis, Cyclic,Analysis, Fourier,Cyclic Analysis,Analyses, Cyclic,Cyclic Analyses,Series, Fourier,Transform, Fourier
D006706 Homeostasis The processes whereby the internal environment of an organism tends to remain balanced and stable. Autoregulation
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

Y M Chen, and N H Holstein-Rathlou
June 1993, Regulatory peptides,
Y M Chen, and N H Holstein-Rathlou
September 1992, The American journal of physiology,
Y M Chen, and N H Holstein-Rathlou
September 2008, American journal of physiology. Renal physiology,
Y M Chen, and N H Holstein-Rathlou
May 1994, Bulletin of mathematical biology,
Y M Chen, and N H Holstein-Rathlou
February 1998, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association,
Y M Chen, and N H Holstein-Rathlou
June 1991, Kidney international. Supplement,
Y M Chen, and N H Holstein-Rathlou
December 1995, Clinical and experimental pharmacology & physiology. Supplement,
Y M Chen, and N H Holstein-Rathlou
June 2004, American journal of physiology. Renal physiology,
Y M Chen, and N H Holstein-Rathlou
November 1987, Life sciences,
Copied contents to your clipboard!