Fluoroquinolone resistance protein NorA of Staphylococcus aureus is a multidrug efflux transporter. 1993

A A Neyfakh, and C M Borsch, and G W Kaatz
Department of Medicinal Chemistry and Pharmacognosy (M/C 781), University of Illinois, Chicago 60680.

The gene of the Staphylococcus aureus fluoroquinolone efflux transporter protein NorA confers resistance to a number of structurally dissimilar drugs, not just to fluoroquinolones, when it is expressed in Bacillus subtilis. NorA provides B. subtilis with resistance to the same drugs and to a similar extent as the B. subtilis multidrug transporter protein Bmr does. NorA and Bmr share 44% sequence similarity. Both the NorA- and Bmr-conferred resistances can be completely reversed by reserpine.

UI MeSH Term Description Entries
D012110 Reserpine An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use. Raunervil,Raupasil,Rausedil,Rausedyl,Serpasil,Serpivite,V-Serp,V Serp
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D000890 Anti-Infective Agents Substances that prevent infectious agents or organisms from spreading or kill infectious agents in order to prevent the spread of infection. Anti-Infective Agent,Anti-Microbial Agent,Antimicrobial Agent,Microbicide,Microbicides,Anti-Microbial Agents,Antiinfective Agents,Antimicrobial Agents,Agent, Anti-Infective,Agent, Anti-Microbial,Agent, Antimicrobial,Agents, Anti-Infective,Agents, Anti-Microbial,Agents, Antiinfective,Agents, Antimicrobial,Anti Infective Agent,Anti Infective Agents,Anti Microbial Agent,Anti Microbial Agents
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill
D013211 Staphylococcus aureus Potentially pathogenic bacteria found in nasal membranes, skin, hair follicles, and perineum of warm-blooded animals. They may cause a wide range of infections and intoxications.
D024841 Fluoroquinolones A group of QUINOLONES with at least one fluorine atom and a piperazinyl group. Fluoroquinolone
D027425 Multidrug Resistance-Associated Proteins A sequence-related subfamily of ATP-BINDING CASSETTE TRANSPORTERS that actively transport organic substrates. Although considered organic anion transporters, a subset of proteins in this family have also been shown to convey drug resistance to neutral organic drugs. Their cellular function may have clinical significance for CHEMOTHERAPY in that they transport a variety of ANTINEOPLASTIC AGENTS. Overexpression of proteins in this class by NEOPLASMS is considered a possible mechanism in the development of multidrug resistance (DRUG RESISTANCE, MULTIPLE). Although similar in function to P-GLYCOPROTEINS, the proteins in this class share little sequence homology to the ATP BINDING CASSETTE TRANSPORTER, SUBFAMILY B, MEMBER 1 family of proteins. Multidrug Resistance-Associated Protein,ATP-Binding Cassette, Sub-Family C Proteins,MOAT Protein,Multispecific Organic Anion Transport Proteins,Multispecific Organic Anion Transporter,ATP Binding Cassette, Sub Family C Proteins,Multidrug Resistance Associated Protein,Multidrug Resistance Associated Proteins,Resistance-Associated Protein, Multidrug

Related Publications

A A Neyfakh, and C M Borsch, and G W Kaatz
April 2012, Journal of bacteriology,
A A Neyfakh, and C M Borsch, and G W Kaatz
May 2000, Antimicrobial agents and chemotherapy,
A A Neyfakh, and C M Borsch, and G W Kaatz
November 2017, Journal of microbiological methods,
A A Neyfakh, and C M Borsch, and G W Kaatz
December 1995, Antimicrobial agents and chemotherapy,
A A Neyfakh, and C M Borsch, and G W Kaatz
May 1993, Antimicrobial agents and chemotherapy,
A A Neyfakh, and C M Borsch, and G W Kaatz
February 1992, Antimicrobial agents and chemotherapy,
A A Neyfakh, and C M Borsch, and G W Kaatz
November 1996, Antimicrobial agents and chemotherapy,
A A Neyfakh, and C M Borsch, and G W Kaatz
October 1999, Antimicrobial agents and chemotherapy,
A A Neyfakh, and C M Borsch, and G W Kaatz
January 2011, Journal of medicinal chemistry,
Copied contents to your clipboard!