Responses of trigeminal brain stem neurons and the digastric muscle to tooth-pulp stimulation in awake cats. 1993

F M Boissonade, and B Matthews
Department of Physiology, School of Medical Sciences, Bristol, England.

1. Cats were prepared for chronic recording from neurons in pars oralis and pars interpolaris of the trigeminal spinal nucleus. Electrodes were implanted into canine teeth for electrical stimulation and the digastric muscle for recording electromyograms. 2. Recordings were made from the animals when they were awake and unrestrained as well as when they were lightly anesthetized. Some neurons were studied under both conditions. 3. In an awake animal, single tooth-pulp stimuli of 0.1 ms duration and < or = 1 mA intensity produced no aversive behavior. 4. The response of trigeminal brain stem neurons in the awake animal to such stimuli consisted of short (approximately 3 ms)- and long (approximately 25 ms)-latency discharges whose thresholds suggested that they were both due to inputs from fast conducting primary afferent fibers. 5. Light anesthesia reduced the number of impulses in both components and in most cases completely abolished the long-latency component evoked by low-intensity stimuli. The threshold of the short-latency component was little affected by light anesthesia. It is postulated that the short-latency component is mediated by a monosynaptic input from primary afferent fibers and the long-latency component by a polysynaptic input from these same fibers. 6. All neurons that responded to tooth-pulp stimulation had inputs from other orofacial sites both in the awake and lightly anesthetized states. After light anesthesia, these receptive fields were altered in only 3 out of 15 neurons. 7. The majority of neurons (18 out of 20) were not spontaneously active in the awake animal. Spontaneous activity in the other two was reduced by light anesthesia. 8. The threshold of the digastric reflex evoked by tooth-pulp stimulation was not altered by light anesthesia, but the size of the response was reduced. 9. The effects of changing the level of anesthesia from deep to light (i.e., without and with reflex withdrawal to squeezing a paw) on the responses to tooth-pulp stimulation were also studied. Decreasing the anesthetic depth tended to decrease the thresholds and increase the magnitude of both the short- and long-latency neuronal responses and the short-latency digastric response.

UI MeSH Term Description Entries
D008297 Male Males
D008409 Mastication The act and process of chewing and grinding food in the mouth. Chewing
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D009055 Mouth The oval-shaped oral cavity located at the apex of the digestive tract and consisting of two parts: the vestibule and the oral cavity proper. Oral Cavity,Cavitas Oris,Cavitas oris propria,Mouth Cavity Proper,Oral Cavity Proper,Vestibule Oris,Vestibule of the Mouth,Cavity, Oral
D009334 Neck Muscles The neck muscles consist of the platysma, splenius cervicis, sternocleidomastoid(eus), longus colli, the anterior, medius, and posterior scalenes, digastric(us), stylohyoid(eus), mylohyoid(eus), geniohyoid(eus), sternohyoid(eus), omohyoid(eus), sternothyroid(eus), and thyrohyoid(eus). Muscle, Neck,Muscles, Neck,Neck Muscle
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009619 Nociceptors Peripheral AFFERENT NEURONS which are sensitive to injuries or pain, usually caused by extreme thermal exposures, mechanical forces, or other noxious stimuli. Their cell bodies reside in the DORSAL ROOT GANGLIA. Their peripheral terminals (NERVE ENDINGS) innervate target tissues and transduce noxious stimuli via axons to the CENTRAL NERVOUS SYSTEM. Pain Receptors,Receptors, Pain,Nociceptive Neurons,Neuron, Nociceptive,Neurons, Nociceptive,Nociceptive Neuron,Nociceptor,Pain Receptor
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain

Related Publications

F M Boissonade, and B Matthews
January 1976, Brain research bulletin,
F M Boissonade, and B Matthews
March 1982, Aichi Gakuin Daigaku Shigakkai shi,
F M Boissonade, and B Matthews
January 1974, Neirofiziologiia = Neurophysiology,
F M Boissonade, and B Matthews
January 1987, Physiology & behavior,
F M Boissonade, and B Matthews
September 1977, Journal de physiologie,
Copied contents to your clipboard!