Response of genetic hypercalciuric rats to a low calcium diet. 1993

M Kim, and N E Sessler, and V Tembe, and M J Favus, and D A Bushinsky
Nephrology Unit, University of Rochester, New York.

A fundamental mechanism for hypercalciuria in genetic hypercalciuric rats appears due to a primary increase in intestinal calcium absorption. However previous studies could not exclude additional mechanisms to account for the hypercalciuria. To determine if enhanced bone mineral dissolution either as a primary abnormality or secondary to a defect in renal tubule calcium reabsorption is responsible for a component of the augmented calcium excretion we studied rats continually inbred for hypercalciuria. Nineteenth generation adult female idiopathic hypercalciuric (IH) and non-inbred control (Ctl) rats were fed 13 g/day of a normal calcium diet (0.6% calcium, NCD) for 10 days. Urine calcium excretion over the last seven days was greater in IH (34 +/- 2 mg/7 day) than in Ctl (2.9 +/- 0.3, P < 0.01) rats. Some rats in each group were continued on the same diet while others were fed a low calcium diet (0.02% calcium, LCD) for an additional 10 days; balance measurements were made over the final seven days. With LCD, urine calcium excretion was approximately 8-fold higher in IH compared to Ctl (13 +/- 2 mg/7 day vs. 1.6 +/- 0.1, IH vs. Ctl, respectively, P < 0.01). In IH rats percent calcium absorption was greater (59 +/- 3% vs. 45 +/- 3, IH vs. Ctl, P < 0.01), however calcium retention was negative (-1.9 +/- 2.0 mg/7 day vs. 6.5 +/- 0.5, IH vs. Ctl, P < 0.01) compared to Ctl rats. The fall in urine calcium excretion when IH rats are fed LCD indicates that enhanced intestinal calcium absorption is a primary mechanism of the hypercalciuria.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007408 Intestinal Absorption Uptake of substances through the lining of the INTESTINES. Absorption, Intestinal
D008297 Male Males
D010758 Phosphorus A non-metal element that has the atomic symbol P, atomic number 15, and atomic weight 31. It is an essential element that takes part in a broad variety of biochemical reactions. Black Phosphorus,Phosphorus-31,Red Phosphorus,White Phosphorus,Yellow Phosphorus,Phosphorus 31,Phosphorus, Black,Phosphorus, Red,Phosphorus, White,Phosphorus, Yellow
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002117 Calcitriol The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption. 1 alpha,25-Dihydroxycholecalciferol,1 alpha,25-Dihydroxyvitamin D3,1, 25-(OH)2D3,1,25(OH)2D3,1,25-Dihydroxycholecalciferol,1,25-Dihydroxyvitamin D3,1 alpha, 25-dihydroxy-20-epi-Vitamin D3,1,25(OH)2-20epi-D3,1,25-dihydroxy-20-epi-Vitamin D3,20-epi-1alpha,25-dihydroxycholecaliferol,Bocatriol,Calcijex,Calcitriol KyraMed,Calcitriol-Nefro,Decostriol,MC-1288,MC1288,Osteotriol,Renatriol,Rocaltrol,Silkis,Sitriol,Soltriol,Tirocal,1 alpha,25 Dihydroxyvitamin D3,1,25 Dihydroxycholecalciferol,1,25 Dihydroxyvitamin D3,1,25 dihydroxy 20 epi Vitamin D3,Calcitriol Nefro,D3, 1 alpha,25-Dihydroxyvitamin,D3, 1,25-Dihydroxyvitamin,D3, 1,25-dihydroxy-20-epi-Vitamin,KyraMed, Calcitriol,MC 1288
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002136 Calcium, Dietary Calcium compounds in DIETARY SUPPLEMENTS or in food that supply the body with calcium. Dietary Calcium
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23

Related Publications

M Kim, and N E Sessler, and V Tembe, and M J Favus, and D A Bushinsky
October 2013, American journal of physiology. Renal physiology,
M Kim, and N E Sessler, and V Tembe, and M J Favus, and D A Bushinsky
May 2014, American journal of physiology. Renal physiology,
M Kim, and N E Sessler, and V Tembe, and M J Favus, and D A Bushinsky
August 2014, The Journal of urology,
M Kim, and N E Sessler, and V Tembe, and M J Favus, and D A Bushinsky
January 2019, Nephron,
M Kim, and N E Sessler, and V Tembe, and M J Favus, and D A Bushinsky
May 1997, Kidney international,
M Kim, and N E Sessler, and V Tembe, and M J Favus, and D A Bushinsky
October 2019, The Journal of urology,
M Kim, and N E Sessler, and V Tembe, and M J Favus, and D A Bushinsky
January 1996, Scanning microscopy,
M Kim, and N E Sessler, and V Tembe, and M J Favus, and D A Bushinsky
January 1999, Kidney international,
M Kim, and N E Sessler, and V Tembe, and M J Favus, and D A Bushinsky
March 2002, Kidney international,
M Kim, and N E Sessler, and V Tembe, and M J Favus, and D A Bushinsky
September 1996, Seminars in nephrology,
Copied contents to your clipboard!