Laminin distribution in developing glomerular basement membranes. 1993

D R Abrahamson, and P L St John
Department of Cell Biology, University of Alabama, Birmingham.

The renal glomerular basement membrane (GMB) separates two distinctly different cell layers: the vascular endothelium, and visceral epithelial podocytes. When initial vascularization of the forming glomerulus takes place during nephrogenesis, the early GBM forms by fusion of a dual basement membrane between endothelial cells and podocytes. As glomerular capillary loops blossom, newly synthesized basement membrane segments derived from podocytes are then inserted or spliced into the fused GBM. The molecular processes accounting for either basement membrane fusion or splicing are unresolved. Using monoclonal anti-mouse laminin antibodies (mAbs) against the end of the laminin long arm (5D3), we have shown in adult mice that peripheral loop GBM is only weakly immunoreactive but the mesangial matrix and tubular basement membrane (TBM) is intensely positive. In contrast, mAbs against domains in the center of the laminin cross only label TBMs and mesangial matrices of mature mice and GBMs are negative. Immunofluorescence microscopy of neonatal mouse kidneys showed, however, that anti-laminin mAbs brightly labeled developing GBMs of glomeruli undergoing initial vascularization and capillary loop formation. Post-fusion GBMs of maturing stage glomeruli became unreactive for most anti-laminin mAbs but remained positive for 5D3. Our results therefore show that some GBM laminin epitopes are transiently expressed during glomerular development. These changes in GBM immunoreactivities may reflect proteolytic processing during basement membrane fusion and splicing, or temporally controlled synthesis of different laminin isoforms.

UI MeSH Term Description Entries
D007678 Kidney Glomerulus A cluster of convoluted capillaries beginning at each nephric tubule in the kidney and held together by connective tissue. Glomerulus, Kidney
D007797 Laminin Large, noncollagenous glycoprotein with antigenic properties. It is localized in the basement membrane lamina lucida and functions to bind epithelial cells to the basement membrane. Evidence suggests that the protein plays a role in tumor invasion. Merosin,Glycoprotein GP-2,Laminin M,Laminin M Chain,Chain, Laminin M,Glycoprotein GP 2,M Chain, Laminin
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D001485 Basement Membrane A darkly stained mat-like EXTRACELLULAR MATRIX (ECM) that separates cell layers, such as EPITHELIUM from ENDOTHELIUM or a layer of CONNECTIVE TISSUE. The ECM layer that supports an overlying EPITHELIUM or ENDOTHELIUM is called basal lamina. Basement membrane (BM) can be formed by the fusion of either two adjacent basal laminae or a basal lamina with an adjacent reticular lamina of connective tissue. BM, composed mainly of TYPE IV COLLAGEN; glycoprotein LAMININ; and PROTEOGLYCAN, provides barriers as well as channels between interacting cell layers. Basal Lamina,Basement Lamina,Lamina Densa,Lamina Lucida,Lamina Reticularis,Basement Membranes,Densas, Lamina,Lamina, Basal,Lamina, Basement,Lucida, Lamina,Membrane, Basement,Membranes, Basement,Reticularis, Lamina
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions
D016253 Microscopy, Immunoelectron Microscopy in which the samples are first stained immunocytochemically and then examined using an electron microscope. Immunoelectron microscopy is used extensively in diagnostic virology as part of very sensitive immunoassays. Immunoelectron Microscopy,Microscopy, Immuno-Electron,Immuno-Electron Microscopies,Immuno-Electron Microscopy,Immunoelectron Microscopies,Microscopies, Immuno-Electron,Microscopies, Immunoelectron,Microscopy, Immuno Electron
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

D R Abrahamson, and P L St John
October 1979, The Journal of biological chemistry,
D R Abrahamson, and P L St John
January 1966, American journal of clinical pathology,
D R Abrahamson, and P L St John
July 1983, Laboratory investigation; a journal of technical methods and pathology,
D R Abrahamson, and P L St John
June 1992, The Journal of cell biology,
D R Abrahamson, and P L St John
January 2013, Cell adhesion & migration,
D R Abrahamson, and P L St John
January 2011, Nephron. Clinical practice,
D R Abrahamson, and P L St John
June 1967, Die Naturwissenschaften,
D R Abrahamson, and P L St John
January 1986, Connective tissue research,
Copied contents to your clipboard!