Interactions of cell-surface galactosyltransferase with immunoglobulins. 1993

M Tomana, and J Zikan, and Z Moldoveanu, and R Kulhavy, and J C Bennett, and J Mestecky
Department of Medicine, University of Alabama, Birmingham 35294.

Detection of the activity of beta-1,4-galactosyltransferase (beta-1,4-GT) in suspensions of viable mouse hepatocytes, the human hepatoma cell line Hep G2, the human colonic adenocarcinoma cell line HT-29, the monocyte-like cell line U937, and human splenic B and T lymphocytes suggested the presence of beta-1,4-GT, in an enzymatically active form, on plasma membranes. The presence of beta-1,4-GT on cell surfaces was also indicated from the effect of trypsinization of live cells, which significantly reduced cell surface beta-1,4-GT activity, but did not affect the activity associated with cytoplasmic membranes. Furthermore, the presence of beta-1,4-GT on the cell surface was demonstrated by indirect immunofluorescence staining of cells with anti-beta-1,4-GT antibody. The detection of radioactivity in immunoglobulins (Ig) and their component chains after incubation with suspensions of intact cells in the presence of Mn2+ and UDP-[3H]-galactose, indicated that Ig molecules were galactosylated. In the absence of UDP-[3H]-galactose, beta-1,4-GT on cell surfaces, or immobilized on Sepharose-4B, formed stable complexes with galactose acceptors, including Ig. The efficiency of binding decreased in the order: J chain > alpha chain > mu chain > polymeric IgA2 > monomeric/polymeric IgA1 > IgM > IgG. Thus, beta-1,4-GT could act as a cell-surface receptor for Ig through a cation-dependent, lectin-like association of the beta-1,4-GT with the carbohydrate moieties of the Ig. This was confirmed by indirect surface immunofluorescence and radiolabeled ligand binding assays. The binding was inhibitable by EDTA, alpha-lactalbumin (in the presence of glucose), GlcNAc, or uridine 3',5'dialdehyde. At 37 degrees C, the apparent affinity constants and association rate constants of interaction between cell surface beta-1,4-GT on glutaraldehyde-fixed HT-29 and U937 cells and alpha 2 chain or monomeric IgA1 were in the range from 7.1 x 10(7) to 4.6 x 10(8) M-1 and from 1 x 10(5) to 3 x 10(6) M-1 s-1, respectively. The dissociation rate constants and half time of dissociation calculated from these data were in the range from 2.1 x 10(-2) to 5.0 x 10(-4) s-1 and from 33 to 1380 s, respectively. The number of alpha 2 or IgA1 molecules bound per HT-29 and U937 cell were in the range from 1.9 x 10(5) to 1.3 x 10(6). The binding of IgA by the cell surface beta-1,4-GT was not associated with internalization or the catabolic degradation of the ligand.

UI MeSH Term Description Entries
D007070 Immunoglobulin A Represents 15-20% of the human serum immunoglobulins, mostly as the 4-chain polymer in humans or dimer in other mammals. Secretory IgA (IMMUNOGLOBULIN A, SECRETORY) is the main immunoglobulin in secretions. IgA,IgA Antibody,IgA1,IgA2,Antibody, IgA
D007136 Immunoglobulins Multi-subunit proteins which function in IMMUNITY. They are produced by B LYMPHOCYTES from the IMMUNOGLOBULIN GENES. They are comprised of two heavy (IMMUNOGLOBULIN HEAVY CHAINS) and two light chains (IMMUNOGLOBULIN LIGHT CHAINS) with additional ancillary polypeptide chains depending on their isoforms. The variety of isoforms include monomeric or polymeric forms, and transmembrane forms (B-CELL ANTIGEN RECEPTORS) or secreted forms (ANTIBODIES). They are divided by the amino acid sequence of their heavy chains into five classes (IMMUNOGLOBULIN A; IMMUNOGLOBULIN D; IMMUNOGLOBULIN E; IMMUNOGLOBULIN G; IMMUNOGLOBULIN M) and various subclasses. Globulins, Immune,Immune Globulin,Immune Globulins,Immunoglobulin,Globulin, Immune
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005700 Galactosyltransferases Enzymes that catalyze the transfer of galactose from a nucleoside diphosphate galactose to an acceptor molecule which is frequently another carbohydrate. EC 2.4.1.-. Galactosyltransferase
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D037102 Lectins Proteins that share the common characteristic of binding to carbohydrates. Some ANTIBODIES and carbohydrate-metabolizing proteins (ENZYMES) also bind to carbohydrates, however they are not considered lectins. PLANT LECTINS are carbohydrate-binding proteins that have been primarily identified by their hemagglutinating activity (HEMAGGLUTININS). However, a variety of lectins occur in animal species where they serve diverse array of functions through specific carbohydrate recognition. Animal Lectin,Animal Lectins,Isolectins,Lectin,Isolectin,Lectin, Animal,Lectins, Animal

Related Publications

M Tomana, and J Zikan, and Z Moldoveanu, and R Kulhavy, and J C Bennett, and J Mestecky
April 1994, Development, growth & differentiation,
M Tomana, and J Zikan, and Z Moldoveanu, and R Kulhavy, and J C Bennett, and J Mestecky
January 1985, Journal of cellular biochemistry,
M Tomana, and J Zikan, and Z Moldoveanu, and R Kulhavy, and J C Bennett, and J Mestecky
June 1998, Glycoconjugate journal,
M Tomana, and J Zikan, and Z Moldoveanu, and R Kulhavy, and J C Bennett, and J Mestecky
October 1990, Developmental biology,
M Tomana, and J Zikan, and Z Moldoveanu, and R Kulhavy, and J C Bennett, and J Mestecky
February 1993, The Journal of cell biology,
M Tomana, and J Zikan, and Z Moldoveanu, and R Kulhavy, and J C Bennett, and J Mestecky
March 1976, FEBS letters,
M Tomana, and J Zikan, and Z Moldoveanu, and R Kulhavy, and J C Bennett, and J Mestecky
December 1989, Biochimica et biophysica acta,
M Tomana, and J Zikan, and Z Moldoveanu, and R Kulhavy, and J C Bennett, and J Mestecky
January 1980, Biochemical Society symposium,
M Tomana, and J Zikan, and Z Moldoveanu, and R Kulhavy, and J C Bennett, and J Mestecky
March 1982, Biochemical and biophysical research communications,
M Tomana, and J Zikan, and Z Moldoveanu, and R Kulhavy, and J C Bennett, and J Mestecky
December 1991, Glycobiology,
Copied contents to your clipboard!