Site-directed mutagenesis study on the roles of evolutionally conserved aspartic acid residues in human glutathione S-transferase P1-1. 1993

K H Kong, and H Inoue, and K Takahashi
Department of Biophysics and Biochemistry, Faculty of Science, University of Tokyo, Japan.

The evolutionally conserved aspartyl residues (Asp57, Asp98 and Asp152) in human glutathione S-transferase P1-1 were replaced with alanine by site-directed mutagenesis to obtain the mutants (D57A, D98A and D152A). The replacement of Asp98 with alanine resulted in a decrease of the affinity for S-hexyl-GSH-agarose, a 5.5-fold increase of the KmGSH and a 2.9-fold increase of the I50 of S-hexyl-GSH for GSH-CDNB conjugation. Asp98 seems to participate in the binding of GSH through hydrogen bonding with the alpha-carboxylate of the gamma-glutamyl residue of GSH. The kcat of D98A was 2.6-fold smaller than that of the wild-type, and the pKa of the thiol group of GSH bound in D98A was approximately 0.8 pK units higher than those in the wild-type. Asp98 also seems to contribute to the activation of GSH to some extent. On the other hand, most of the kinetic parameters of D57A and D152A were similar to those of the wild-type. However, the thermostabilities of D57A and D152A were significantly lower than that of the wild-type. Asp57 and Asp152 seem to be important for maintaining the proper conformation of the enzyme.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004137 Dinitrochlorobenzene A skin irritant that may cause dermatitis of both primary and allergic types. Contact sensitization with DNCB has been used as a measure of cellular immunity. DNCB is also used as a reagent for the detection and determination of pyridine compounds. 1-Chloro-2,4-Dinitrobenzene,2,4-Dinitrochlorobenzene,Benzene, 1-Chloro-2,4-Dinitro-,Chlorodinitrobenzene,DNCB,1 Chloro 2,4 Dinitrobenzene,2,4 Dinitrochlorobenzene
D004795 Enzyme Stability The extent to which an enzyme retains its structural conformation or its activity when subjected to storage, isolation, and purification or various other physical or chemical manipulations, including proteolytic enzymes and heat. Enzyme Stabilities,Stabilities, Enzyme,Stability, Enzyme
D004976 Ethacrynic Acid A compound that inhibits symport of sodium, potassium, and chloride primarily in the ascending limb of Henle, but also in the proximal and distal tubules. This pharmacological action results in excretion of these ions, increased urinary output, and reduction in extracellular fluid. This compound has been classified as a loop or high ceiling diuretic. Edecrin,Etacrynic Acid,Ethacrinic Acid,Ethacrynate Sodium,Ethacrynic Acid, Sodium Salt,Hydromedin,Acid, Etacrynic,Acid, Ethacrinic,Acid, Ethacrynic,Sodium, Ethacrynate
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione

Related Publications

K H Kong, and H Inoue, and K Takahashi
October 1992, The Journal of biological chemistry,
K H Kong, and H Inoue, and K Takahashi
March 1991, The Biochemical journal,
K H Kong, and H Inoue, and K Takahashi
November 1993, The Journal of biological chemistry,
K H Kong, and H Inoue, and K Takahashi
October 2003, Protein and peptide letters,
K H Kong, and H Inoue, and K Takahashi
August 1992, The Biochemical journal,
K H Kong, and H Inoue, and K Takahashi
August 2002, IUBMB life,
K H Kong, and H Inoue, and K Takahashi
February 1994, Cancer research,
K H Kong, and H Inoue, and K Takahashi
February 1998, FEBS letters,
Copied contents to your clipboard!