The intrarenal renin-angiotensin system. 1993

K D Burns, and T Homma, and R C Harris
Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232.

In this article, we have discussed the localization of components of the renal renin-angiotensin system, as well as the existing information on the regulation of this axis and the effects of Ang II on renal function. All the components of the renin-angiotensin system are present in both fetal and adult kidney. In the adult kidney, renin is principally localized to jg cells of the distal afferent arteriole, where release is stimulated by increases in intracellular cAMP and inhibited by increases in cytosolic calcium. Four distinct stimuli mediating renin release are (1) NaCl sensed at the macula densa, (2) the sympathetic nervous system, (3) humoral factors, with Ang II, vasopressin, endothelin, and adenosine inhibiting renin release, and (4) changes in intrarenal blood pressure. Alterations in renal renin gene expression have been reported in pathophysiological states, such as salt depletion, diabetes mellitus, ureteral obstruction, Bartter's syndrome, and with high protein feeding. The highest renal concentrations of mRNA for the renin substrate angiotensinogen are found in the PT, where the protein is localized to subapical granules. Both salt depletion and androgens upregulate renal angiotensinogen mRNA. Of interest, renal angiotensinogen mRNA levels are lower in SHR than in normotensive WKY rats. As with angiotensinogen, renal ACE is mainly localized to the PT, with highest concentration on the brush border. The mechanisms of regulation of both renal angiotensinogen and ACE require further study. Using recently developed specific nonpeptide Ang II receptor antagonists, it appears that adult renal Ang II receptors are principally of the AT1 class, whereas fetal kidney Ang II receptors are of the AT2 subtype. By binding to AT1 receptors, Ang II exerts constrictive effects on both afferent and efferent arterioles, with increased effect reported on efferent arterioles. Glomerular Ang II receptors are localized to mesangial cells, mediating contractile responses resulting in changes in glomerular surface area and Kf, and potentially regulating mesangial sieving and phagocytosis. These receptors are reduced with salt restriction or in experimental diabetes. The highest concentrations of tubular Ang II receptors are found in PT, on both brush border and basolateral membranes.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D011945 Receptors, Angiotensin Cell surface proteins that bind ANGIOTENSINS and trigger intracellular changes influencing the behavior of cells. Angiotensin Receptor,Angiotensin Receptors,Angiotensin II Receptor,Angiotensin III Receptor,Receptor, Angiotensin II,Receptor, Angiotensin III,Receptor, Angiotensin
D012083 Renin A highly specific (Leu-Leu) endopeptidase that generates ANGIOTENSIN I from its precursor ANGIOTENSINOGEN, leading to a cascade of reactions which elevate BLOOD PRESSURE and increase sodium retention by the kidney in the RENIN-ANGIOTENSIN SYSTEM. The enzyme was formerly listed as EC 3.4.99.19. Angiotensin-Forming Enzyme,Angiotensinogenase,Big Renin,Cryorenin,Inactive Renin,Pre-Prorenin,Preprorenin,Prorenin,Angiotensin Forming Enzyme,Pre Prorenin,Renin, Big,Renin, Inactive
D012084 Renin-Angiotensin System A BLOOD PRESSURE regulating system of interacting components that include RENIN; ANGIOTENSINOGEN; ANGIOTENSIN CONVERTING ENZYME; ANGIOTENSIN I; ANGIOTENSIN II; and angiotensinase. Renin, an enzyme produced in the kidney, acts on angiotensinogen, an alpha-2 globulin produced by the liver, forming ANGIOTENSIN I. Angiotensin-converting enzyme, contained in the lung, acts on angiotensin I in the plasma converting it to ANGIOTENSIN II, an extremely powerful vasoconstrictor. Angiotensin II causes contraction of the arteriolar and renal VASCULAR SMOOTH MUSCLE, leading to retention of salt and water in the KIDNEY and increased arterial blood pressure. In addition, angiotensin II stimulates the release of ALDOSTERONE from the ADRENAL CORTEX, which in turn also increases salt and water retention in the kidney. Angiotensin-converting enzyme also breaks down BRADYKININ, a powerful vasodilator and component of the KALLIKREIN-KININ SYSTEM. Renin-Angiotensin-Aldosterone System,Renin Angiotensin Aldosterone System,Renin Angiotensin System,System, Renin-Angiotensin,System, Renin-Angiotensin-Aldosterone
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000808 Angiotensinogen An alpha-globulin of about 453 amino acids, depending on the species. It is produced by the liver in response to lowered blood pressure and secreted into blood circulation. Angiotensinogen is the inactive precursor of the ANGIOTENSINS produced in the body by successive enzyme cleavages. Cleavage of angiotensinogen by RENIN yields the decapeptide ANGIOTENSIN I. Further cleavage of angiotensin I (by ANGIOTENSIN CONVERTING ENZYME) yields the potent vasoconstrictor octapeptide ANGIOTENSIN II; and then, via other enzymes, other angiotensins also involved in the hemodynamic-regulating RENIN-ANGIOTENSIN SYSTEM. Hypertensinogen,Renin-Substrate,SERPINA8,Proangiotensin,Renin Substrate Tetradecapeptide,Serpin A8,Renin Substrate,Tetradecapeptide, Renin Substrate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

K D Burns, and T Homma, and R C Harris
April 2009, Molecular and cellular endocrinology,
K D Burns, and T Homma, and R C Harris
January 1993, Current opinion in nephrology and hypertension,
K D Burns, and T Homma, and R C Harris
May 2015, Advances in chronic kidney disease,
K D Burns, and T Homma, and R C Harris
August 1979, Federation proceedings,
K D Burns, and T Homma, and R C Harris
April 2004, Kidney international,
K D Burns, and T Homma, and R C Harris
February 2009, Nature clinical practice. Nephrology,
K D Burns, and T Homma, and R C Harris
January 1968, Der Urologe,
K D Burns, and T Homma, and R C Harris
August 1982, Kidney international. Supplement,
K D Burns, and T Homma, and R C Harris
August 2003, Trends in endocrinology and metabolism: TEM,
K D Burns, and T Homma, and R C Harris
March 1988, The American journal of physiology,
Copied contents to your clipboard!