Changes in pial arteriolar diameter and CSF adenosine concentrations during hypoxia. 1993

J R Meno, and A C Ngai, and H R Winn
Department of Neurological Surgery, University of Washington School of Medicine, Seattle.

We measured the changes in pial arteriolar diameter and CSF concentrations of adenosine, inosine, and hypoxanthine during hypoxia in the absence and presence of topically applied dipyridamole (10(-6) M) and erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA; 10(-5) M). Closed cranial windows were implanted in halothane-anesthetized adult male Sprague-Dawley rats for the observation of the pial circulation and collection of CSF. The mean resting arteriolar diameter in mock CSF was 31.2 +/- 5.9 microns. Topically applied dipyridamole and EHNA, in combination, caused a slight but significant (p < 0.05) increase in resting arteriolar diameter (33.8 +/- 4.3 microns). With mock CSF, moderate hypoxia caused a 22.1 +/- 9.7% increase in pial vessel diameter. Topically applied dipyridamole and EHNA significantly (p < 0.01) potentiated pial arteriolar vasodilation in response to hypoxia. Moreover, the potentiating effects of dipyridamole and EHNA during hypoxia were completely abolished by theophylline (0.20 mumol/g, i.p.; p < 0.05), an adenosine receptor antagonist. Resting concentrations of adenosine, inosine, and hypoxanthine in the subwindow CSF were 0.18 +/- 0.09, 0.35 +/- 0.21, and 0.62 +/- 0.12 microM, respectively. In the absence of dipyridamole and EHNA, these levels were not affected by sustained moderate hypoxia (PaO2 = 36 +/- 6 mm Hg). However, in the presence of dipyridamole and EHNA, the concentration of adenosine in the CSF during hypoxia was significantly (p < 0.05) increased. Our data indicate that dipyridamole and EHNA potentiate hypoxic vasodilation of pial arterioles while simultaneously increasing extracellular adenosine levels, thus supporting the hypothesis that adenosine is involved in the regulation of cerebral blood flow.

UI MeSH Term Description Entries
D007042 Hypoxanthines Purine bases related to hypoxanthine, an intermediate product of uric acid synthesis and a breakdown product of adenine catabolism.
D007288 Inosine A purine nucleoside that has hypoxanthine linked by the N9 nitrogen to the C1 carbon of ribose. It is an intermediate in the degradation of purines and purine nucleosides to uric acid and in pathways of purine salvage. It also occurs in the anticodon of certain transfer RNA molecules. (Dorland, 28th ed)
D008297 Male Males
D010841 Pia Mater The innermost layer of the three meninges covering the brain and spinal cord. It is the fine vascular membrane that lies under the ARACHNOID and the DURA MATER. Mater, Pia,Maters, Pia,Pia Maters
D002560 Cerebrovascular Circulation The circulation of blood through the BLOOD VESSELS of the BRAIN. Brain Blood Flow,Regional Cerebral Blood Flow,Cerebral Blood Flow,Cerebral Circulation,Cerebral Perfusion Pressure,Circulation, Cerebrovascular,Blood Flow, Brain,Blood Flow, Cerebral,Brain Blood Flows,Cerebral Blood Flows,Cerebral Circulations,Cerebral Perfusion Pressures,Circulation, Cerebral,Flow, Brain Blood,Flow, Cerebral Blood,Perfusion Pressure, Cerebral,Pressure, Cerebral Perfusion
D004176 Dipyridamole A phosphodiesterase inhibitor that blocks uptake and metabolism of adenosine by erythrocytes and vascular endothelial cells. Dipyridamole also potentiates the antiaggregating action of prostacyclin. (From AMA Drug Evaluations Annual, 1994, p752) Antistenocardin,Apo-Dipyridamole,Cerebrovase,Cléridium,Curantil,Curantyl,Dipyramidole,Kurantil,Miosen,Novo-Dipiradol,Persantin,Persantine,Apo Dipyridamole,Novo Dipiradol
D000225 Adenine A purine base and a fundamental unit of ADENINE NUCLEOTIDES. Vitamin B 4,4, Vitamin B,B 4, Vitamin
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies

Related Publications

J R Meno, and A C Ngai, and H R Winn
June 1989, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
J R Meno, and A C Ngai, and H R Winn
January 2017, Journal of vascular research,
J R Meno, and A C Ngai, and H R Winn
April 1987, The American journal of physiology,
J R Meno, and A C Ngai, and H R Winn
December 1988, Journal of neurosurgery,
J R Meno, and A C Ngai, and H R Winn
October 2007, NeuroImage,
J R Meno, and A C Ngai, and H R Winn
December 1984, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
J R Meno, and A C Ngai, and H R Winn
September 1992, No to shinkei = Brain and nerve,
J R Meno, and A C Ngai, and H R Winn
January 2019, Frontiers in physiology,
J R Meno, and A C Ngai, and H R Winn
August 1999, British journal of pharmacology,
J R Meno, and A C Ngai, and H R Winn
May 1990, The American journal of physiology,
Copied contents to your clipboard!