Pulmonary and peripheral vascular factors are important determinants of peak exercise oxygen uptake in patients with heart failure. 1993

M D Kraemer, and S H Kubo, and T S Rector, and N Brunsvold, and A J Bank
Department of Medicine, University of Minnesota Medical School, Minneapolis 55455.

OBJECTIVE This study was conducted to determine the relations among exercise capacity and pulmonary, peripheral vascular, cardiac and neurohormonal factors in patients with chronic heart failure. BACKGROUND The mechanisms of exercise intolerance in heart failure have not been fully clarified. Previous studies have indicated that peripheral factors such as regional blood flow may be more closely associated with exercise capacity than cardiac function, whereas the role of pulmonary function has received less attention. METHODS Fifty patients with stable heart failure underwent a comprehensive assessment that included a symptom-limited maximal cardiopulmonary exercise test, right heart catheterization, pulmonary function tests, neurohormonal levels, radionuclide ventriculography and forearm blood flow at rest and after 5 min of brachial artery occlusion. Univariate and stepwise linear regression analyses were used to relate peak exercise oxygen uptake to indexes of cardiac, peripheral vascular, pulmonary and neurohormonal factors both alone and in combination. RESULTS The mean ejection fraction was 19% and peak oxygen uptake was 16.5 ml/min per kg in this group of patients. By univariate analysis, there were no significant correlations between peak oxygen uptake and rest cardiac output, pulmonary wedge pressure, ejection fraction and pulmonary or systemic vascular resistance. In contrast, even in the absence of arterial desaturation during exercise, the forced expiratory volume in 1 s (r = 0.55, p < 0.001), forced vital capacity (r = 0.46, p < 0.01) and diffusing capacity for carbon monoxide (r = 0.47, p < 0.01) were all significantly associated with peak oxygen uptake. Peak postocclusion forearm blood flow (r = 0.45, p < 0.01), the corresponding minimal forearm vascular resistance (r = -0.56; p < 0.01) and plasma norepinephrine level at rest (r = -0.45; p < 0.01) were also significantly correlated with peak oxygen uptake. By multivariate analysis, minimal forearm vascular resistance and forced expiratory volume in 1 s were shown to be independently related to peak oxygen uptake, with a combined R value of 0.71. Other two-variate models included forced expiratory volume and plasma norepinephrine (R = 0.67) and forced expiratory volume and diffusing capacity (R = 0.65). Because forced vital capacity was highly correlated with forced expiratory volume in 1 s, it could be combined with the same variables to yield similar R values. Addition of any third variable did not improve these correlations. CONCLUSIONS In comparison with rest indexes of cardiac performance, measures of pulmonary function and peripheral vasodilator capacity were more closely associated with peak exercise oxygen uptake in patients with heart failure. Furthermore, the associations were independent of each other and together accounted for 50% of the variance in peak oxygen uptake. These data suggest that pulmonary and peripheral vascular adaptations may be important determinants of exercise intolerance in heart failure.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows
D012129 Respiratory Function Tests Measurement of the various processes involved in the act of respiration: inspiration, expiration, oxygen and carbon dioxide exchange, lung volume and compliance, etc. Lung Function Tests,Pulmonary Function Tests,Function Test, Pulmonary,Function Tests, Pulmonary,Pulmonary Function Test,Test, Pulmonary Function,Tests, Pulmonary Function,Function Test, Lung,Function Test, Respiratory,Function Tests, Lung,Function Tests, Respiratory,Lung Function Test,Respiratory Function Test,Test, Lung Function,Test, Respiratory Function,Tests, Lung Function,Tests, Respiratory Function
D005080 Exercise Test Controlled physical activity which is performed in order to allow assessment of physiological functions, particularly cardiovascular and pulmonary, but also aerobic capacity. Maximal (most intense) exercise is usually required but submaximal exercise is also used. Arm Ergometry Test,Bicycle Ergometry Test,Cardiopulmonary Exercise Testing,Exercise Testing,Step Test,Stress Test,Treadmill Test,Cardiopulmonary Exercise Test,EuroFit Tests,Eurofit Test Battery,European Fitness Testing Battery,Fitness Testing,Physical Fitness Testing,Arm Ergometry Tests,Bicycle Ergometry Tests,Cardiopulmonary Exercise Tests,Ergometry Test, Arm,Ergometry Test, Bicycle,Ergometry Tests, Arm,Ergometry Tests, Bicycle,EuroFit Test,Eurofit Test Batteries,Exercise Test, Cardiopulmonary,Exercise Testing, Cardiopulmonary,Exercise Tests,Exercise Tests, Cardiopulmonary,Fitness Testing, Physical,Fitness Testings,Step Tests,Stress Tests,Test Battery, Eurofit,Test, Arm Ergometry,Test, Bicycle Ergometry,Test, Cardiopulmonary Exercise,Test, EuroFit,Test, Exercise,Test, Step,Test, Stress,Test, Treadmill,Testing, Cardiopulmonary Exercise,Testing, Exercise,Testing, Fitness,Testing, Physical Fitness,Tests, Arm Ergometry,Tests, Bicycle Ergometry,Tests, Cardiopulmonary Exercise,Tests, EuroFit,Tests, Exercise,Tests, Step,Tests, Stress,Tests, Treadmill,Treadmill Tests
D005260 Female Females
D005542 Forearm Part of the upper extremity in humans and primates extending from the ELBOW to the WRIST. Antebrachium,Antebrachiums,Forearms
D006328 Cardiac Catheterization Procedures in which placement of CARDIAC CATHETERS is performed for therapeutic or diagnostic procedures. Catheterization, Cardiac,Catheterization, Heart,Heart Catheterization,Cardiac Catheterizations,Catheterizations, Cardiac,Catheterizations, Heart,Heart Catheterizations

Related Publications

M D Kraemer, and S H Kubo, and T S Rector, and N Brunsvold, and A J Bank
September 2003, Japanese heart journal,
M D Kraemer, and S H Kubo, and T S Rector, and N Brunsvold, and A J Bank
November 2020, Journal of cardiopulmonary rehabilitation and prevention,
M D Kraemer, and S H Kubo, and T S Rector, and N Brunsvold, and A J Bank
November 2016, Cardiac failure review,
M D Kraemer, and S H Kubo, and T S Rector, and N Brunsvold, and A J Bank
August 2009, The American journal of cardiology,
M D Kraemer, and S H Kubo, and T S Rector, and N Brunsvold, and A J Bank
November 1999, Clinical science (London, England : 1979),
M D Kraemer, and S H Kubo, and T S Rector, and N Brunsvold, and A J Bank
December 1997, Heart (British Cardiac Society),
M D Kraemer, and S H Kubo, and T S Rector, and N Brunsvold, and A J Bank
June 2021, ESC heart failure,
M D Kraemer, and S H Kubo, and T S Rector, and N Brunsvold, and A J Bank
May 2018, Cardiac failure review,
M D Kraemer, and S H Kubo, and T S Rector, and N Brunsvold, and A J Bank
April 2018, Revista espanola de cardiologia (English ed.),
M D Kraemer, and S H Kubo, and T S Rector, and N Brunsvold, and A J Bank
December 2017, International journal of cardiology,
Copied contents to your clipboard!