Marburg virus gene 4 encodes the virion membrane protein, a type I transmembrane glycoprotein. 1993

C Will, and E Mühlberger, and D Linder, and W Slenczka, and H D Klenk, and H Feldmann
Institut für Virologie, Philipps-Universität, Marburg, Germany.

Gene 4 of Marburg virus, strain Musoke, was subjected to nucleotide sequence analysis. It is 2,844 nucleotides long and extends from genome position 5821 to position 8665 (EMBL Data Library, emnew: MVREPCYC [accession no. Z12132]). The gene is flanked by transcriptional signal sequences (start signal, 3'-UACUUCUUGUAAUU-5'; termination signal, 3'-UAAUUCUUUUU-5') which are conserved in all Marburg virus genes. The major open reading frame encodes a polypeptide of 681 amino acids (M(r), 74,797). After in vitro transcription and translation, as well as expression in Escherichia coli, this protein was identified by its immunoreactivity with specific antisera as the unglycosylated form of the viral membrane glycoprotein (GP). The GP is characterized by the following four different domains: (i) a hydrophobic signal peptide at the amino terminus (1 to 18), (ii) a predominantly hydrophilic external domain (19 to 643), (iii) a hydrophobic transmembrane anchor (644 to 673), and (iv) a small hydrophilic cytoplasmic tail at the carboxy terminus (674 to 681). Amino acid analysis indicated that the signal peptide is removed from the mature GP. The GP therefore has the structural features of a type I transmembrane glycoprotein. The external domain of the protein has 19 N-glycosylation sites and several clusters of hydroxyamino acids and proline residues that are likely to be the attachment sites for about 30 O-glycosidic carbohydrate chains. The region extending from positions 585 to 610 shows significant homology to a domain observed in the envelope proteins of several retroviruses and Ebola virus that has been suspected to be responsible for immunosuppressive properties of these viruses. A second open reading frame of gene 4 has the coding capacity for an unidentified polypeptide 112 amino acids long.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D014709 Vero Cells A CELL LINE derived from the kidney of the African green (vervet) monkey, (CHLOROCEBUS AETHIOPS) used primarily in virus replication studies and plaque assays. Cell, Vero,Cells, Vero,Vero Cell

Related Publications

C Will, and E Mühlberger, and D Linder, and W Slenczka, and H D Klenk, and H Feldmann
October 1988, Journal of virology,
C Will, and E Mühlberger, and D Linder, and W Slenczka, and H D Klenk, and H Feldmann
November 1990, AIDS research and human retroviruses,
C Will, and E Mühlberger, and D Linder, and W Slenczka, and H D Klenk, and H Feldmann
October 2008, Journal of virology,
C Will, and E Mühlberger, and D Linder, and W Slenczka, and H D Klenk, and H Feldmann
July 1995, The Journal of biological chemistry,
C Will, and E Mühlberger, and D Linder, and W Slenczka, and H D Klenk, and H Feldmann
December 1989, The Journal of general virology,
C Will, and E Mühlberger, and D Linder, and W Slenczka, and H D Klenk, and H Feldmann
October 2000, Journal of virology,
C Will, and E Mühlberger, and D Linder, and W Slenczka, and H D Klenk, and H Feldmann
May 2002, The Biochemical journal,
C Will, and E Mühlberger, and D Linder, and W Slenczka, and H D Klenk, and H Feldmann
May 1992, The EMBO journal,
C Will, and E Mühlberger, and D Linder, and W Slenczka, and H D Klenk, and H Feldmann
November 1999, The Journal of biological chemistry,
C Will, and E Mühlberger, and D Linder, and W Slenczka, and H D Klenk, and H Feldmann
February 2007, Journal of virology,
Copied contents to your clipboard!