Topography of the E site on the Escherichia coli ribosome. 1993

J Wower, and P Scheffer, and L A Sylvers, and W Wintermeyer, and R A Zimmermann
Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst 01003.

Three photoreactive tRNA probes have been utilized in order to identify ribosomal components that are in contact with the aminoacyl acceptor end and the anticodon loop of tRNA bound to the E site of Escherichia coli ribosomes. Two of the probes were derivatives of E. coli tRNA(Phe) in which adenosines at positions 73 and 76 were replaced by 2-azidoadenosine. The third probe was derived from yeast tRNA(Phe) by substituting wyosine at position 37 with 2-azidoadenosine. Despite the modifications, all of the photoreactive tRNA species were able to bind to the E site of E. coli ribosomes programmed with poly(A) and, upon irradiation, formed covalent adducts with the ribosomal subunits. The tRNA(Phe) probes modified at or near the 3' terminus exclusively labeled protein L33 in the 50S subunit. The tRNA(Phe) derivative containing 2-azidoadenosine within the anticodon loop became cross-linked to protein S11 as well as to a segment of the 16S rRNA encompassing the 3'-terminal 30 nucleotides. We have located the two extremities of the E site-bound tRNA on the ribosomal subunits according to the positions of L33, S11 and the 3' end of 16S rRNA defined by immune electron microscopy. Our results demonstrate conclusively that the E site is topographically distinct from either the P site or the A site, and that it is located alongside the P site as expected for the tRNA exit site.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D001386 Azides Organic or inorganic compounds that contain the -N3 group. Azide
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome
D012336 RNA, Ribosomal, 16S Constituent of 30S subunit prokaryotic ribosomes containing 1600 nucleotides and 21 proteins. 16S rRNA is involved in initiation of polypeptide synthesis. 16S Ribosomal RNA,16S rRNA,RNA, 16S Ribosomal,Ribosomal RNA, 16S,rRNA, 16S
D012360 RNA, Transfer, Phe A transfer RNA which is specific for carrying phenylalanine to sites on the ribosomes in preparation for protein synthesis. Phenylalanine-Specific tRNA,Transfer RNA, Phe,tRNAPhe,tRNA(Phe),Phe Transfer RNA,Phenylalanine Specific tRNA,RNA, Phe Transfer,tRNA, Phenylalanine-Specific
D015347 RNA Probes RNA, usually prepared by transcription from cloned DNA, which complements a specific mRNA or DNA and is generally used for studies of virus genes, distribution of specific RNA in tissues and cells, integration of viral DNA into genomes, transcription, etc. Whereas DNA PROBES are preferred for use at a more macroscopic level for detection of the presence of DNA/RNA from specific species or subspecies, RNA probes are preferred for genetic studies. Conventional labels for the RNA probe include radioisotope labels 32P and 125I and the chemical label biotin. RNA probes may be further divided by category into plus-sense RNA probes, minus-sense RNA probes, and antisense RNA probes. Gene Probes, RNA,RNA Probe,Probe, RNA,Probes, RNA,Probes, RNA Gene,RNA Gene Probes

Related Publications

J Wower, and P Scheffer, and L A Sylvers, and W Wintermeyer, and R A Zimmermann
December 2002, Journal of biochemistry,
J Wower, and P Scheffer, and L A Sylvers, and W Wintermeyer, and R A Zimmermann
June 1974, Nature,
J Wower, and P Scheffer, and L A Sylvers, and W Wintermeyer, and R A Zimmermann
February 1996, Science (New York, N.Y.),
J Wower, and P Scheffer, and L A Sylvers, and W Wintermeyer, and R A Zimmermann
July 1995, Gene,
J Wower, and P Scheffer, and L A Sylvers, and W Wintermeyer, and R A Zimmermann
January 1974, Biochemistry,
J Wower, and P Scheffer, and L A Sylvers, and W Wintermeyer, and R A Zimmermann
April 1988, DNA (Mary Ann Liebert, Inc.),
J Wower, and P Scheffer, and L A Sylvers, and W Wintermeyer, and R A Zimmermann
July 1972, Biochimica et biophysica acta,
J Wower, and P Scheffer, and L A Sylvers, and W Wintermeyer, and R A Zimmermann
February 1976, The Journal of biological chemistry,
J Wower, and P Scheffer, and L A Sylvers, and W Wintermeyer, and R A Zimmermann
February 1978, Biochemistry,
J Wower, and P Scheffer, and L A Sylvers, and W Wintermeyer, and R A Zimmermann
March 1984, Nucleic acids research,
Copied contents to your clipboard!