The effect of thrombin on actin filament and vinculin of corneal endothelial cells. 1993

T Sakamoto, and Y Nakashima, and K Sueishi
Department of Pathology, Faculty of Medicine, Kyushu University, Fukuoka, Japan.

OBJECTIVE The authors examined the effect of thrombin on confluent bovine corneal endothelial (BCE) cells in vitro, especially on cellular integrity and on the redistribution of F-actin and vinculin. METHODS Immunofluorescent stainings against F-actin and vinculin were carried out on confluent BCE cells, and the effect of thrombin was evaluated. RESULTS F-actin was distributed at the cytoplasmic peripheries of confluent BCE cells, forming dense peripheral bands (DPB), whereas vinculin was linearly located at the cell borders. Enzymatically active thrombin caused the loss of DPB and an increase of central microfilament bundles, associating the dissociation of vinculin-cell plaques and the formation of intercellular gaps. However, enzymatically inactive thrombin did not induce such changes. The thrombin effect was reversible and occurred in a concentration-dependent manner. The pre-incubation of BCE cells with disrupting agents of microtubules, such as colchicine and demecolcine, or voltage-dependent Ca2+ channel blockers did not affect these thrombin-induced changes, whereas forskolin and energy blockers such as oligomycin AB and C and antimycin A inhibited these changes. CONCLUSIONS Enzymatic-active thrombin affects the arrangement of the cytoskeletal structure of BCE cells and cell-substratum interaction and plays an important role in the re-integrity or repair processes of the monolayer of BCE cells.

UI MeSH Term Description Entries
D007531 Isoflurophate A di-isopropyl-fluorophosphate which is an irreversible cholinesterase inhibitor used to investigate the NERVOUS SYSTEM. DFP,Diisopropylfluorophosphate,Fluostigmine,Bis(1-methylethyl) Phosphorofluoridate,Di-isopropylphosphorofluoridate,Diisopropylphosphofluoridate,Dyflos,Floropryl,Fluorostigmine,Di isopropylphosphorofluoridate
D008841 Actin Cytoskeleton Fibers composed of MICROFILAMENT PROTEINS, which are predominately ACTIN. They are the smallest of the cytoskeletal filaments. Actin Filaments,Microfilaments,Actin Microfilaments,Actin Cytoskeletons,Actin Filament,Actin Microfilament,Cytoskeleton, Actin,Cytoskeletons, Actin,Filament, Actin,Filaments, Actin,Microfilament,Microfilament, Actin,Microfilaments, Actin
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003078 Colchicine A major alkaloid from Colchicum autumnale L. and found also in other Colchicum species. Its primary therapeutic use is in the treatment of gout, but it has been used also in the therapy of familial Mediterranean fever (PERIODIC DISEASE). Colchicine, (+-)-Isomer,Colchicine, (R)-Isomer
D003703 Demecolcine An alkaloid isolated from Colchicum autumnale L. and used as an antineoplastic. Colcemid,Colcemide,Colchamine,Demecolcine, (+-)-Isomer
D004728 Endothelium, Corneal Single layer of large flattened cells covering the surface of the cornea. Anterior Chamber Epithelium,Corneal Endothelium,Endothelium, Anterior Chamber,Epithelium, Anterior Chamber,Anterior Chamber Endothelium
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein

Related Publications

T Sakamoto, and Y Nakashima, and K Sueishi
October 2009, The Journal of biological chemistry,
T Sakamoto, and Y Nakashima, and K Sueishi
January 1990, Journal of ocular pharmacology,
T Sakamoto, and Y Nakashima, and K Sueishi
October 1990, Cornea,
T Sakamoto, and Y Nakashima, and K Sueishi
May 1981, Proceedings of the National Academy of Sciences of the United States of America,
T Sakamoto, and Y Nakashima, and K Sueishi
January 1981, Biochemistry,
T Sakamoto, and Y Nakashima, and K Sueishi
January 1987, The International journal of biochemistry,
T Sakamoto, and Y Nakashima, and K Sueishi
February 1983, Science (New York, N.Y.),
T Sakamoto, and Y Nakashima, and K Sueishi
January 2017, Seminars in ophthalmology,
T Sakamoto, and Y Nakashima, and K Sueishi
February 1995, FEBS letters,
Copied contents to your clipboard!