Adenosine alters glucose use during ischemia and reperfusion in isolated rat hearts. 1993

B A Finegan, and G D Lopaschuk, and C S Coulson, and A S Clanachan
Department of Anaesthesia, Faculty of Medicine, University of Alberta, Edmonton, Canada.

BACKGROUND Adenosine possesses marked cardioprotective properties, but the mechanisms for this beneficial effect are unclear. The objective of this study was to determine the effect of adenosine given before ischemia or at reperfusion on mechanical function, glucose oxidation, glycolysis, and metabolite levels in isolated, paced (280 beats per minute) working rat hearts. RESULTS Hearts were perfused with Krebs-Henseleit buffer containing 11 mM glucose, 1.2 mM palmitate, and 500 microU.mL-1 insulin at an 11.5 mm Hg left atrial preload and 80 mm Hg aortic afterload. Adenosine (100 microM) pretreatment or adenosine (100 microM) at reperfusion markedly increased the recovery of mechanical function (from 44% to 81% and 96%, respectively) after 60 minutes of low-flow ischemia (coronary flow, 0.5 mL.min-1). Glucose oxidation (mumol.min-1 x g dry wt-1) was inhibited during ischemia (from 0.44 +/- 0.04 to 0.12 +/- 0.01), and this was not altered by adenosine (100 microM). During reperfusion, glucose oxidation recovered (to 0.38 +/- 0.02) and adenosine (100 microM), given at reperfusion, further increased glucose oxidation (to 0.52 +/- 0.06). The rate of glycolysis (mumol.min-1 x g dry wt-1), which was unaffected by ischemia per se, was inhibited by adenosine pretreatment (from 4.7 +/- 0.3 to 2.6 +/- 0.3). During reperfusion, glycolysis was also inhibited by adenosine relative to control (3.9 +/- 0.8) either when present during ischemia (2.6 +/- 0.6) or during reperfusion (1.4 +/- 0.4). These effects of adenosine on glucose metabolism reduced the calculated rate of H+ production attributable to glucose metabolism during the ischemic and reperfusion periods. Tissue lactate levels (mumol.g dry wt-1), which increased during ischemia (from 9.3 +/- 1.1 to 87.4 +/- 10.3) and then declined during reperfusion (to 26.2 +/- 3.7), were depressed further by adenosine pretreatment (to 19.7 +/- 4.1) and by adenosine at reperfusion (to 13.6 +/- 2.1). ATP levels (mumol.g dry wt-1), which were depressed by ischemia (from 18.1 +/- 1.1 to 10.6 +/- 1.3) and tended to be further depressed during reperfusion (to 7.1 +/- 0.7), were increased by adenosine pretreatment (to 14.1 +/- 1.2) and by adenosine at reperfusion (to 15.6 +/- 2.4). CONCLUSIONS The effects of adenosine on glucose metabolism that would tend to decrease cellular acidosis and hence, Ca2+ overload, may explain the beneficial effects of adenosine on mechanical function observed in these hearts during reperfusion after ischemia.

UI MeSH Term Description Entries
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D008297 Male Males
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D003327 Coronary Disease An imbalance between myocardial functional requirements and the capacity of the CORONARY VESSELS to supply sufficient blood flow. It is a form of MYOCARDIAL ISCHEMIA (insufficient blood supply to the heart muscle) caused by a decreased capacity of the coronary vessels. Coronary Heart Disease,Coronary Diseases,Coronary Heart Diseases,Disease, Coronary,Disease, Coronary Heart,Diseases, Coronary,Diseases, Coronary Heart,Heart Disease, Coronary,Heart Diseases, Coronary
D005260 Female Females
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006003 Glycogen
D006019 Glycolysis A metabolic process that converts GLUCOSE into two molecules of PYRUVIC ACID through a series of enzymatic reactions. Energy generated by this process is conserved in two molecules of ATP. Glycolysis is the universal catabolic pathway for glucose, free glucose, or glucose derived from complex CARBOHYDRATES, such as GLYCOGEN and STARCH. Embden-Meyerhof Pathway,Embden-Meyerhof-Parnas Pathway,Embden Meyerhof Parnas Pathway,Embden Meyerhof Pathway,Embden-Meyerhof Pathways,Pathway, Embden-Meyerhof,Pathway, Embden-Meyerhof-Parnas,Pathways, Embden-Meyerhof
D006706 Homeostasis The processes whereby the internal environment of an organism tends to remain balanced and stable. Autoregulation

Related Publications

B A Finegan, and G D Lopaschuk, and C S Coulson, and A S Clanachan
April 1990, Zhonghua xin xue guan bing za zhi,
B A Finegan, and G D Lopaschuk, and C S Coulson, and A S Clanachan
March 2004, Journal of cardiovascular pharmacology,
B A Finegan, and G D Lopaschuk, and C S Coulson, and A S Clanachan
May 1993, The American journal of physiology,
B A Finegan, and G D Lopaschuk, and C S Coulson, and A S Clanachan
December 2003, Anadolu kardiyoloji dergisi : AKD = the Anatolian journal of cardiology,
B A Finegan, and G D Lopaschuk, and C S Coulson, and A S Clanachan
June 1987, The American journal of physiology,
B A Finegan, and G D Lopaschuk, and C S Coulson, and A S Clanachan
June 1990, The American journal of physiology,
B A Finegan, and G D Lopaschuk, and C S Coulson, and A S Clanachan
November 1997, Circulation,
B A Finegan, and G D Lopaschuk, and C S Coulson, and A S Clanachan
May 2002, The American journal of clinical nutrition,
B A Finegan, and G D Lopaschuk, and C S Coulson, and A S Clanachan
November 1998, Magnetic resonance in medicine,
B A Finegan, and G D Lopaschuk, and C S Coulson, and A S Clanachan
May 2010, Chinese medical journal,
Copied contents to your clipboard!