Functional significance of expiratory muscles during spontaneous breathing in anesthetized dogs. 1993

G A Farkas, and M A Schroeder
Thoracic Physiology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota 55905.

Recent electromyographic studies in awake and anesthetized dogs have demonstrated that spontaneous breathing in prone dogs is associated with an increased activation of the expiratory muscles compared with that recorded in supine dogs. On the basis of these observations, one would infer that the mechanical role and contribution of the expiratory musculature to the act of breathing are enhanced in the prone posture. The changes in length associated with these postural increases in expiratory muscle electrical activity, however, have not been investigated and formed the basis of our investigation. We examined the active and passive changes in length of expiratory muscles during spontaneous breathing in supine and prone anesthetized dogs and assessed the relative role of the expiratory musculature in the generation of tidal volume. The experiments were performed on eight mongrel dogs anesthetized with pentobarbital sodium. In all eight animals, spontaneous breathing in the prone posture was associated with an increased activation (electromyogram) of the triangularis sterni, external oblique, and transversus abdominis muscles compared with that recorded in the supine posture. We quantitated the role of the expiratory muscles in both postures by measuring the volume difference between relaxation volume of the respiratory system and the end-expiratory lung volume. In the supine animal, 93 ml were attributed to the expiratory musculature, whereas in the prone animal, we noted that 186 ml (P < 0.01) were displaced during expiration, representing 43 and 52% (NS) of tidal volume, respectively. During spontaneous breathing in the supine or prone posture, all three expiratory muscles underwent significant length changes.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009126 Muscle Relaxation That phase of a muscle twitch during which a muscle returns to a resting position. Muscle Relaxations,Relaxation, Muscle,Relaxations, Muscle
D011187 Posture The position or physical attitude of the body. Postures
D012119 Respiration The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration ( Breathing
D012129 Respiratory Function Tests Measurement of the various processes involved in the act of respiration: inspiration, expiration, oxygen and carbon dioxide exchange, lung volume and compliance, etc. Lung Function Tests,Pulmonary Function Tests,Function Test, Pulmonary,Function Tests, Pulmonary,Pulmonary Function Test,Test, Pulmonary Function,Tests, Pulmonary Function,Function Test, Lung,Function Test, Respiratory,Function Tests, Lung,Function Tests, Respiratory,Lung Function Test,Respiratory Function Test,Test, Lung Function,Test, Respiratory Function,Tests, Lung Function,Tests, Respiratory Function
D012132 Respiratory Muscles These include the muscles of the DIAPHRAGM and the INTERCOSTAL MUSCLES. Ventilatory Muscles,Respiratory Muscle,Muscle, Respiratory,Muscle, Ventilatory,Muscles, Respiratory,Muscles, Ventilatory,Ventilatory Muscle
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000758 Anesthesia A state characterized by loss of feeling or sensation. This depression of nerve function is usually the result of pharmacologic action and is induced to allow performance of surgery or other painful procedures.

Related Publications

G A Farkas, and M A Schroeder
March 1988, Journal of applied physiology (Bethesda, Md. : 1985),
G A Farkas, and M A Schroeder
May 1991, Respiration physiology,
G A Farkas, and M A Schroeder
June 1992, Journal of applied physiology (Bethesda, Md. : 1985),
G A Farkas, and M A Schroeder
June 1993, Journal of applied physiology (Bethesda, Md. : 1985),
G A Farkas, and M A Schroeder
June 1985, Brain research,
G A Farkas, and M A Schroeder
September 1979, Journal of applied physiology: respiratory, environmental and exercise physiology,
G A Farkas, and M A Schroeder
January 1959, Journal de physiologie,
G A Farkas, and M A Schroeder
November 1959, Journal of applied physiology,
G A Farkas, and M A Schroeder
February 1987, Journal of applied physiology (Bethesda, Md. : 1985),
Copied contents to your clipboard!