Human tracheal epithelial cells selectively incorporate 15-hydroxyeicosatetraenoic acid into phosphatidylinositol. 1993

S E Alpert, and R W Walenga
Pediatric Pulmonary Division, Rainbow Babies and Childrens Hospital, Case Western Reserve University, Cleveland, Ohio 44106.

15-hydroxyeicosatetraenoic acid (15-HETE) is the major lipoxygenase metabolite of arachidonic acid produced by human airway epithelial cells. Because HETEs have been shown to be rapidly metabolized and/or incorporated into cellular lipids in other cell types, we investigated the uptake, metabolism, and intracellular distribution of exogenous 15-HETE by primary monolayer cultures of human tracheal epithelial (HTE) cells. At concentrations of 0.1 microM, [3H]15-HETE was rapidly incorporated by HTE cells and also metabolized primarily by beta-oxidation to several more polar products that were released extracellularly. The majority of cell-associated [3H]15-HETE radiolabel was distributed into phospholipids, with phosphatidylinositol (PI) accounting for approximately 75% of phospholipid radiolabel. Exogenous 5- and 12-HETE were also metabolized by HTE cells but were less extensively incorporated into phospholipids and were distributed primarily into phosphatidylcholine and phosphatidylethanolamine. Phospholipase A2 hydrolysis indicated selective esterification of unmodified 15-HETE to the sn-2 position of phospholipids. 15-HETE incorporation into total phospholipids and into PI was saturable (half maximal incorporation at 0.82 and 0.68 microM, respectively), while incorporation into neutral lipids continued to increase at concentrations of 15-HETE up to 5 microM. The incorporation of 15-HETE into PI was metabolically stable, with an intracellular half-life of 12 h, and was not subject to mobilization in response to 5 microM calcium ionophore A23187. HTE cells can incorporate and metabolize HETEs that the cells themselves produce as well as those that might be released by inflammatory cells recruited into the airway.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011865 Radioisotope Dilution Technique Method for assessing flow through a system by injection of a known quantity of radionuclide into the system and monitoring its concentration over time at a specific point in the system. (From Dorland, 28th ed) Radioisotope Dilution Technic,Dilution Technic, Radioisotope,Dilution Technics, Radioisotope,Dilution Technique, Radioisotope,Dilution Techniques, Radioisotope,Radioisotope Dilution Technics,Radioisotope Dilution Techniques,Technic, Radioisotope Dilution,Technics, Radioisotope Dilution,Technique, Radioisotope Dilution,Techniques, Radioisotope Dilution
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D002855 Chromatography, Thin Layer Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Thin-Layer,Thin Layer Chromatography,Chromatographies, Thin Layer,Chromatographies, Thin-Layer,Thin Layer Chromatographies,Thin-Layer Chromatographies,Thin-Layer Chromatography
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006893 Hydroxyeicosatetraenoic Acids Eicosatetraenoic acids substituted in any position by one or more hydroxy groups. They are important intermediates in a series of biosynthetic processes leading from arachidonic acid to a number of biologically active compounds such as prostaglandins, thromboxanes, and leukotrienes. HETE,Acids, Hydroxyeicosatetraenoic

Related Publications

S E Alpert, and R W Walenga
September 1989, American journal of respiratory cell and molecular biology,
S E Alpert, and R W Walenga
July 1990, Prostaglandins, leukotrienes, and essential fatty acids,
S E Alpert, and R W Walenga
September 1993, Biochimica et biophysica acta,
S E Alpert, and R W Walenga
May 2021, Biochimica et biophysica acta. Molecular and cell biology of lipids,
S E Alpert, and R W Walenga
May 1990, Journal of lipid research,
S E Alpert, and R W Walenga
October 1988, Journal of cellular physiology,
Copied contents to your clipboard!