Nitric oxide modulates vascular permeability in the rat coronary circulation. 1993

J G Filep, and E Földes-Filep, and P Sirois
Department of Pharmacology, Faculty of Medicine, University of Sherbrooke, P.Q., Canada.

1. The objective of the present study was to assess whether inhibition of nitric oxide (NO) production could modulate vascular permeability in the coronary circulation in conscious rats. 2. Intravenous injection of NG-nitro-L-arginine methyl ester (L-NAME, 2 mg kg-1) resulted in a slowly developing hypertension and evoked twofold increases in vascular permeability in the left ventricle and right atrium as measured by the extravasation of Evans blue dye. Maintenance of mean arterial blood pressure at the level observed following L-NAME injection by infusion of noradrenaline (620-820 ng kg-1 min-1) did not induce significant protein extravasation in the coronary circulation. 3. L-NAME treatment markedly enhanced (up to 490%) protein extravasation both in the left ventricle and right atrium in response to platelet-activating factor (PAF, 1.9 nmol kg-1, i.v.) and endothelin-1 (1 nmol kg-1, i.v.). Noradrenaline infusion potentiated (up to 69%) endothelin-1-induced protein extravasation. The permeability effect of PAF was only slightly enhanced by noradrenaline. 4. The present findings indicate that inhibition of endogenous NO synthesis leads to an increase in protein extravasation and to potentiation of the permeability effects of PAF and endothelin-1 in the coronary circulation. These results also suggest that NO may be an important regulator of vascular permeability under physiological and pathological conditions.

UI MeSH Term Description Entries
D008297 Male Males
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D010972 Platelet Activating Factor A phospholipid derivative formed by PLATELETS; BASOPHILS; NEUTROPHILS; MONOCYTES; and MACROPHAGES. It is a potent platelet aggregating agent and inducer of systemic anaphylactic symptoms, including HYPOTENSION; THROMBOCYTOPENIA; NEUTROPENIA; and BRONCHOCONSTRICTION. AGEPC,Acetyl Glyceryl Ether Phosphorylcholine,PAF-Acether,Phosphorylcholine, Acetyl Glyceryl Ether,1-Alkyl-2-acetyl-sn-glycerophosphocholine,Platelet Aggregating Factor,Platelet Aggregation Enhancing Factor,Platelet-Activating Substance,Thrombocyte Aggregating Activity,1 Alkyl 2 acetyl sn glycerophosphocholine,Aggregating Factor, Platelet,Factor, Platelet Activating,PAF Acether,Platelet Activating Substance
D001798 Blood Proteins Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins. Blood Protein,Plasma Protein,Plasma Proteins,Serum Protein,Serum Proteins,Protein, Blood,Protein, Plasma,Protein, Serum,Proteins, Blood,Proteins, Plasma,Proteins, Serum
D002199 Capillary Permeability The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement. Microvascular Permeability,Permeability, Capillary,Permeability, Microvascular,Vascular Permeability,Capillary Permeabilities,Microvascular Permeabilities,Permeabilities, Capillary,Permeabilities, Microvascular,Permeabilities, Vascular,Permeability, Vascular,Vascular Permeabilities
D003326 Coronary Circulation The circulation of blood through the CORONARY VESSELS of the HEART. Circulation, Coronary
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001120 Arginine An essential amino acid that is physiologically active in the L-form. Arginine Hydrochloride,Arginine, L-Isomer,DL-Arginine Acetate, Monohydrate,L-Arginine,Arginine, L Isomer,DL Arginine Acetate, Monohydrate,Hydrochloride, Arginine,L Arginine,L-Isomer Arginine,Monohydrate DL-Arginine Acetate
D016232 Endothelins 21-Amino-acid peptides produced by vascular endothelial cells and functioning as potent vasoconstrictors. The endothelin family consists of three members, ENDOTHELIN-1; ENDOTHELIN-2; and ENDOTHELIN-3. All three peptides contain 21 amino acids, but vary in amino acid composition. The three peptides produce vasoconstrictor and pressor responses in various parts of the body. However, the quantitative profiles of the pharmacological activities are considerably different among the three isopeptides. Endothelium-Derived Vasoconstrictor Factors,Endothelin,Vasoconstrictor Factors, Endothelium-Derived
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats

Related Publications

J G Filep, and E Földes-Filep, and P Sirois
February 1992, The American journal of physiology,
J G Filep, and E Földes-Filep, and P Sirois
August 1992, The American journal of physiology,
J G Filep, and E Földes-Filep, and P Sirois
September 1994, The American journal of physiology,
J G Filep, and E Földes-Filep, and P Sirois
June 1992, The American journal of physiology,
J G Filep, and E Földes-Filep, and P Sirois
June 1992, Hypertension (Dallas, Tex. : 1979),
J G Filep, and E Földes-Filep, and P Sirois
December 2000, European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology,
J G Filep, and E Földes-Filep, and P Sirois
June 1992, Circulation research,
J G Filep, and E Földes-Filep, and P Sirois
February 1997, Journal of the American College of Cardiology,
J G Filep, and E Földes-Filep, and P Sirois
April 2005, Cardiovascular research,
J G Filep, and E Földes-Filep, and P Sirois
November 1993, British journal of pharmacology,
Copied contents to your clipboard!