Expression of the developmental I antigen by a cloned human cDNA encoding a member of a beta-1,6-N-acetylglucosaminyltransferase gene family. 1993

M F Bierhuizen, and M G Mattei, and M Fukuda
La Jolla Cancer Research Foundation, Cancer Research Center, California 92037.

The blood group i/I antigens were the first identified alloantigens that display a dramatic change during human development. The i and I antigens are determined by linear and branched poly-N-acetyllactosaminoglycans, respectively. In human erythrocytes during embryonic development, the fetal (i) antigen is replaced by the adult (I) antigen as a result of the appearance of a beta-1,6-N-acetylglucosaminyltransferase, the I-branching enzyme. Here, we report the cDNA cloning and expression of this branching enzyme that converts linear into branched poly-N-acetyllactosaminoglycans, thus introducing the I antigen in transfected cells. The cDNA sequence predicts a protein with type II membrane topology as has been found for all other mammalian glycosyltransferases cloned to date. The Chinese hamster ovary cells that stably express the isolated cDNA acquire I-branched structures as evidenced by the structural analysis of glycopeptides from these cells. Comparison of the amino acid sequence with those of other glycosyltransferases revealed that this I-branching enzyme and another beta-1,6-N-acetylglucosaminyltransferase that forms a branch in O-glycans are strongly homologous in the center of their putative catalytic domains. Moreover, the genes encoding these two beta-1,6-N-acetylglucosaminyltransferases were found to be located at the same locus on chromosome 9, band q21. These results indicate that the I-branching enzyme represents a member of a beta-1,6-N-acetylglucosaminyltransferase gene family of which expression is controlled by developmental programs.

UI MeSH Term Description Entries
D007048 I Blood-Group System A blood group related both to the ABO and P systems that includes several different antigens found in most people on erythrocytes, in milk, and in saliva. The antibodies react only at low temperatures. Blood-Group System, I,Blood-Group Systems, I,I Blood Group System,I Blood-Group Systems,System, I Blood-Group,Systems, I Blood-Group
D007519 Isoantigens Antigens that exist in alternative (allelic) forms in a single species. When an isoantigen is encountered by species members who lack it, an immune response is induced. Typical isoantigens are the BLOOD GROUP ANTIGENS. Alloantigens,Alloantigen,Isoantigen
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002240 Carbohydrate Sequence The sequence of carbohydrates within POLYSACCHARIDES; GLYCOPROTEINS; and GLYCOLIPIDS. Carbohydrate Sequences,Sequence, Carbohydrate,Sequences, Carbohydrate
D002871 Chromosome Banding Staining of bands, or chromosome segments, allowing the precise identification of individual chromosomes or parts of chromosomes. Applications include the determination of chromosome rearrangements in malformation syndromes and cancer, the chemistry of chromosome segments, chromosome changes during evolution, and, in conjunction with cell hybridization studies, chromosome mapping. Banding, Chromosome,Bandings, Chromosome,Chromosome Bandings
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D002899 Chromosomes, Human, Pair 9 A specific pair of GROUP C CHROMSOMES of the human chromosome classification. Chromosome 9
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle

Related Publications

M F Bierhuizen, and M G Mattei, and M Fukuda
December 1997, Proceedings of the National Academy of Sciences of the United States of America,
M F Bierhuizen, and M G Mattei, and M Fukuda
July 1993, The Journal of biological chemistry,
M F Bierhuizen, and M G Mattei, and M Fukuda
April 2003, Biochemical and biophysical research communications,
M F Bierhuizen, and M G Mattei, and M Fukuda
February 1993, Biochemical and biophysical research communications,
Copied contents to your clipboard!