Cloning and characterization of Pseudomonas sp. strain DNT genes for 2,4-dinitrotoluene degradation. 1993

W C Suen, and J C Spain
Air Force Civil Engineering Support Agency, Tyndall Air Force Base, Florida 32403-6001.

The degradation of 2,4-dinitrotoluene (DNT) by Pseudomonas sp. strain DNT is initiated by a dioxygenase attack to yield 4-methyl-5-nitrocatechol (MNC) and nitrite. Subsequent oxidation of MNC by a monooxygenase results in the removal of the second molecule of nitrite, and further enzymatic reactions lead to ring fission. Initial studies on the molecular basis of DNT degradation in this strain revealed the presence of three plasmids. Mitomycin-derived mutants deficient in either DNT dioxygenase only or DNT dioxygenase and MNC monooxygenase were isolated. Plasmid profiles of mutant strains suggested that the mutations resulted from deletions in the largest plasmid. Total plasmid DNA partially digested by EcoRI was cloned into a broad-host-range cosmid vector, pCP13. Recombinant clones containing genes encoding DNT dioxygenase, MNC monooxygenase, and 2,4,5-trihydroxytoluene oxygenase were characterized by identification of reaction products and the ability to complement mutants. Subcloning analysis suggests that the DNT dioxygenase is a multicomponent enzyme system and that the genes for the DNT pathway are organized in at least three different operons.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010105 Oxygenases Oxidases that specifically introduce DIOXYGEN-derived oxygen atoms into a variety of organic molecules. Oxygenase
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011549 Pseudomonas A genus of gram-negative, aerobic, rod-shaped bacteria widely distributed in nature. Some species are pathogenic for humans, animals, and plants. Chryseomonas,Pseudomona,Flavimonas
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003360 Cosmids Plasmids containing at least one cos (cohesive-end site) of PHAGE LAMBDA. They are used as cloning vehicles. Cosmid
D004136 Dinitrobenzenes Benzene derivatives which are substituted with two nitro groups in the ortho, meta or para positions. Dinitrobenzene,Dinitrophenyl Compound,Dinitrophenyl Compounds,Dinitrotoluene,Dinitrotoluenes,Compound, Dinitrophenyl
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D015183 Restriction Mapping Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA. Endonuclease Mapping, Restriction,Enzyme Mapping, Restriction,Site Mapping, Restriction,Analysis, Restriction Enzyme,Enzyme Analysis, Restriction,Restriction Enzyme Analysis,Analyses, Restriction Enzyme,Endonuclease Mappings, Restriction,Enzyme Analyses, Restriction,Enzyme Mappings, Restriction,Mapping, Restriction,Mapping, Restriction Endonuclease,Mapping, Restriction Enzyme,Mapping, Restriction Site,Mappings, Restriction,Mappings, Restriction Endonuclease,Mappings, Restriction Enzyme,Mappings, Restriction Site,Restriction Endonuclease Mapping,Restriction Endonuclease Mappings,Restriction Enzyme Analyses,Restriction Enzyme Mapping,Restriction Enzyme Mappings,Restriction Mappings,Restriction Site Mapping,Restriction Site Mappings,Site Mappings, Restriction

Related Publications

W C Suen, and J C Spain
November 1991, Applied and environmental microbiology,
W C Suen, and J C Spain
February 2006, Biotechnology and bioengineering,
W C Suen, and J C Spain
April 1981, Chemical & pharmaceutical bulletin,
W C Suen, and J C Spain
June 2011, Journal of applied microbiology,
W C Suen, and J C Spain
July 1996, Applied and environmental microbiology,
Copied contents to your clipboard!