Immunotoxic effects of mercuric compounds on human lymphocytes and monocytes. III. Alterations in B-cell function and viability. 1993

B J Shenker, and P Berthold, and C Rooney, and L Vitale, and K DeBolt, and I M Shapiro
Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia 19104-6002.

The major goal of the study was to determine the effects of high and low levels of mercury on human B-cells. Following treatment of B-cells with HgCl2 (0-1000 ng) and MeHgCl2 (0-100 ng), their activation by mitogens was evaluated. Both forms of mercury caused a dose dependent reduction in B-cell proliferation in the presence or absence of monocytes. MeHgCl was approximately 10 times more potent than HgCl2. Mercury also inhibited the ability of these cells to synthesize IgM and IgG. Analysis of the expression of activation markers indicated that CD69, an early marker of cell activation, was not effected by mercury. In comparison, B-cell expression of the low affinity IgE receptor and the transferrin receptor were significantly reduced. Of particular interest, cells activated by mitogen for 48 hr became refractory to the immunotoxic effects of mercury. When exposed to high levels of HgCl2 (0.5-10 micrograms/ml) and MeHgCl (0.05-1 micrograms/ml), there was minimal reduction in B-cell viability at 1-4 hr, however, after exposure to mercury for 24 hr, cell death was apparent. MeHgCl was approximately 5-10 times more potent than HgCl2. Electron microscopic analysis revealed early nuclear alterations characterized by hyperchromaticity, nuclear fragmentation and condensation of nucleoplasm. Both forms of mercury caused a rapid and sustained elevation in the intracellular levels of Ca++. The results of this investigation clearly show that mercury-containing compounds are immunomodulatory; moreover, the decrease in B-cell function indicates that this metal is immunotoxic at very low exposure levels. Furthermore, the cytotoxic events are consistent with the notion that mercury initiates changes associated with programmed cell death.

UI MeSH Term Description Entries
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008627 Mercuric Chloride Mercury chloride (HgCl2). A highly toxic compound that volatizes slightly at ordinary temperature and appreciably at 100 degrees C. It is corrosive to mucous membranes and used as a topical antiseptic and disinfectant. Mercury Dichloride,Corrosive Sublimate,HgCl2,Mercuric Perchloride,Mercury Bichloride,Mercury Perchloride,Sublimate,Bichloride, Mercury,Chloride, Mercuric,Dichloride, Mercury,Perchloride, Mercuric,Perchloride, Mercury,Sublimate, Corrosive
D008628 Mercury A silver metallic element that exists as a liquid at room temperature. It has the atomic symbol Hg (from hydrargyrum, liquid silver), atomic number 80, and atomic weight 200.59. Mercury is used in many industrial applications and its salts have been employed therapeutically as purgatives, antisyphilitics, disinfectants, and astringents. It can be absorbed through the skin and mucous membranes which leads to MERCURY POISONING. Because of its toxicity, the clinical use of mercury and mercurials is diminishing.
D008767 Methylmercury Compounds Organic compounds in which mercury is attached to a methyl group. Methyl Mercury Compounds,Compounds, Methyl Mercury,Compounds, Methylmercury,Mercury Compounds, Methyl
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001402 B-Lymphocytes Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation. B-Cells, Lymphocyte,B-Lymphocyte,Bursa-Dependent Lymphocytes,B Cells, Lymphocyte,B Lymphocyte,B Lymphocytes,B-Cell, Lymphocyte,Bursa Dependent Lymphocytes,Bursa-Dependent Lymphocyte,Lymphocyte B-Cell,Lymphocyte B-Cells,Lymphocyte, Bursa-Dependent,Lymphocytes, Bursa-Dependent

Related Publications

B J Shenker, and P Berthold, and C Rooney, and L Vitale, and K DeBolt, and I M Shapiro
January 1993, Immunopharmacology and immunotoxicology,
B J Shenker, and P Berthold, and C Rooney, and L Vitale, and K DeBolt, and I M Shapiro
January 1992, Immunopharmacology and immunotoxicology,
B J Shenker, and P Berthold, and C Rooney, and L Vitale, and K DeBolt, and I M Shapiro
December 2004, International immunopharmacology,
B J Shenker, and P Berthold, and C Rooney, and L Vitale, and K DeBolt, and I M Shapiro
February 2006, International immunopharmacology,
B J Shenker, and P Berthold, and C Rooney, and L Vitale, and K DeBolt, and I M Shapiro
December 1978, Journal of immunology (Baltimore, Md. : 1950),
B J Shenker, and P Berthold, and C Rooney, and L Vitale, and K DeBolt, and I M Shapiro
January 1994, Journal of medicine,
B J Shenker, and P Berthold, and C Rooney, and L Vitale, and K DeBolt, and I M Shapiro
February 2001, Toxicological sciences : an official journal of the Society of Toxicology,
B J Shenker, and P Berthold, and C Rooney, and L Vitale, and K DeBolt, and I M Shapiro
March 1990, Infection and immunity,
B J Shenker, and P Berthold, and C Rooney, and L Vitale, and K DeBolt, and I M Shapiro
November 1993, Fundamental and applied toxicology : official journal of the Society of Toxicology,
B J Shenker, and P Berthold, and C Rooney, and L Vitale, and K DeBolt, and I M Shapiro
November 2016, Journal of immunotoxicology,
Copied contents to your clipboard!