Comparative analysis of beta-adrenergic receptor kinase and beta-arrestin mRNA expression in human cells. 1993

G Parruti, and G Ambrosini, and M Sallese, and A De Blasi
Laboratory of Receptor Physiopathology, Istituto di Ricerche Farmacologiche Mario Negri, Santa Maria Imbaro, Italy.

Receptor phosphorylation is a key step in the process of rapid desensitization. beta-Adrenergic receptor kinase is a specific receptor kinase that is known to phosphorylate and induce desensitization of several G-coupled synaptic receptors only when they are occupied by their agonists. We recently cloned human beta ARK cDNA and reported high levels of beta ARK expression in human peripheral blood leukocytes, also providing the first evidence for its possible functional role in these cells. Complete homologous receptor desensitization by beta ARK requires an additional cytosolic factor, called beta-arrestin. In the present study, we have cloned a 212 bp fragment of the human beta-arrestin cDNA to perform a comparative analysis of beta ARK and beta-arrestin mRNA expression in various human cell types. We found that also beta-arrestin mRNA is abundant in non-innervated tissues and cells. The fact that the entire machinery for G-coupled receptor desensitization is highly expressed in these cells further supports the idea that beta ARK may regulate nonsynaptic as well as synaptic receptors.

UI MeSH Term Description Entries
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005136 Eye Proteins PROTEINS derived from TISSUES of the EYE. Proteins, Eye
D006207 Half-Life The time it takes for a substance (drug, radioactive nuclide, or other) to lose half of its pharmacologic, physiologic, or radiologic activity. Halflife,Half Life,Half-Lifes,Halflifes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000071557 beta-Arrestins Non-visual system arrestins that negatively regulate G-PROTEIN-COUPLED RECEPTORS (GPCRs) and may also function independently of GPCR signaling. They bind and recruit many different signaling factors, including MITOGEN-ACTIVATED PROTEIN KINASES; SRC-FAMILY-KINASES; and FILAMIN to GPCRs and may recognize different phosphorylation states of the receptors to determine the specificity of the cellular response to signaling. beta-Arrestin,beta Arrestin,beta Arrestins
D000941 Antigens Substances that are recognized by the immune system and induce an immune reaction. Antigen
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

G Parruti, and G Ambrosini, and M Sallese, and A De Blasi
June 1996, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research,
G Parruti, and G Ambrosini, and M Sallese, and A De Blasi
February 1993, The Journal of biological chemistry,
G Parruti, and G Ambrosini, and M Sallese, and A De Blasi
January 1999, Science (New York, N.Y.),
G Parruti, and G Ambrosini, and M Sallese, and A De Blasi
February 1993, Science (New York, N.Y.),
G Parruti, and G Ambrosini, and M Sallese, and A De Blasi
December 1991, Molecular pharmacology,
G Parruti, and G Ambrosini, and M Sallese, and A De Blasi
February 1993, Circulation,
G Parruti, and G Ambrosini, and M Sallese, and A De Blasi
August 2008, Molecular cell,
Copied contents to your clipboard!