Sensitivity of committed hematopoietic progenitor cells in vitro (BFU-E, CFU-E, CFU-GM) and two human carcinoma cell lines toward rhodamine-123 and phosphonium salt II-41. 1993

D W Sehy, and L E Shao, and D Rideout, and J Yu
Department of Molecular & Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037.

Lipophilic cationic compounds accumulate more rapidly in the mitochondria of many carcinoma-derived cells than in non-transformed cells, thus leading to their pronounced cytotoxic effects on carcinoma cells. In this report, in order to measure tumoricidal effects vs cytotoxicity to normal hematopoietic progenitors, we studied the sensitivity of committed human hematopoietic cells in vitro and two human carcinoma cell lines (2008 ovary carcinoma cells and HT29 colon cells) toward two such compounds, rhodamine-123 and phosphonium salt II-41. Continuous exposure of human marrow cells to rhodamine-123 or phosphonium salt II-41 for 7 and 14 days produced dose-related inhibition of colony formation of erythroid burst-forming units (BFU-E), erythroid colony forming units (CFU-E), and CFU-granulocyte/macrophage (CFU-GM). The average values of IC50 for several different human bone marrows are approximately 0.9-1.1 microM for rhodamine-123 toward BFU-E, CFU-E and CFU-GM, and 31-38 microM for phosphonium salt II-41 toward the same hematopoietic progenitors. These IC50 values are similar for each type of hematopoietic progenitors. In each case, rhodamine-123 appears to be at least 30-fold more growth suppressive than phosphonium salt II-41 in these in vitro colony assays. In addition, the sensitivity of these hematopoietic progenitors toward these two compounds is comparable to the inhibition of colony formation for the two human carcinoma cell lines. The lack of differences in the sensitivity among the various hematopoietic progenitors in vitro may disagree with previous studies showing there are vast differences in the state of cell cycle for these hematopoietic progenitor cells. However, these observations about the cytotoxicity in vitro can be explained by assuming that the cytotoxicity of these compounds depends on other factors such as differentiation processes, which result in the appearance of many or very active mitochondria. Alternatively, the lack of differences in the sensitivity of the in vitro colony formation can also be attributed to a reported decrease in expression of P-glycoprotein, a multidrug efflux pump, in the differentiating hematopoietic progeny cells.

UI MeSH Term Description Entries
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D009943 Organophosphorus Compounds Organic compounds that contain phosphorus as an integral part of the molecule. Included under this heading is broad array of synthetic compounds that are used as PESTICIDES and DRUGS. Organophosphorus Compound,Organopyrophosphorus Compound,Organopyrophosphorus Compounds,Compound, Organophosphorus,Compound, Organopyrophosphorus,Compounds, Organophosphorus,Compounds, Organopyrophosphorus
D010051 Ovarian Neoplasms Tumors or cancer of the OVARY. These neoplasms can be benign or malignant. They are classified according to the tissue of origin, such as the surface EPITHELIUM, the stromal endocrine cells, and the totipotent GERM CELLS. Cancer of Ovary,Ovarian Cancer,Cancer of the Ovary,Neoplasms, Ovarian,Ovary Cancer,Ovary Neoplasms,Cancer, Ovarian,Cancer, Ovary,Cancers, Ovarian,Cancers, Ovary,Neoplasm, Ovarian,Neoplasm, Ovary,Neoplasms, Ovary,Ovarian Cancers,Ovarian Neoplasm,Ovary Cancers,Ovary Neoplasm
D003110 Colonic Neoplasms Tumors or cancer of the COLON. Cancer of Colon,Colon Adenocarcinoma,Colon Cancer,Cancer of the Colon,Colon Neoplasms,Colonic Cancer,Neoplasms, Colonic,Adenocarcinoma, Colon,Adenocarcinomas, Colon,Cancer, Colon,Cancer, Colonic,Cancers, Colon,Cancers, Colonic,Colon Adenocarcinomas,Colon Cancers,Colon Neoplasm,Colonic Cancers,Colonic Neoplasm,Neoplasm, Colon,Neoplasm, Colonic,Neoplasms, Colon
D004354 Drug Screening Assays, Antitumor Methods of investigating the effectiveness of anticancer cytotoxic drugs and biologic inhibitors. These include in vitro cell-kill models and cytostatic dye exclusion tests as well as in vivo measurement of tumor growth parameters in laboratory animals. Anticancer Drug Sensitivity Tests,Antitumor Drug Screens,Cancer Drug Tests,Drug Screening Tests, Tumor-Specific,Dye Exclusion Assays, Antitumor,Anti-Cancer Drug Screens,Antitumor Drug Screening Assays,Tumor-Specific Drug Screening Tests,Anti Cancer Drug Screens,Anti-Cancer Drug Screen,Antitumor Drug Screen,Cancer Drug Test,Drug Screen, Anti-Cancer,Drug Screen, Antitumor,Drug Screening Tests, Tumor Specific,Drug Screens, Anti-Cancer,Drug Screens, Antitumor,Drug Test, Cancer,Drug Tests, Cancer,Screen, Anti-Cancer Drug,Screen, Antitumor Drug,Screens, Anti-Cancer Drug,Screens, Antitumor Drug,Test, Cancer Drug,Tests, Cancer Drug,Tumor Specific Drug Screening Tests
D005260 Female Females
D006098 Granulocytes Leukocytes with abundant granules in the cytoplasm. They are divided into three groups according to the staining properties of the granules: neutrophilic, eosinophilic, and basophilic. Mature granulocytes are the NEUTROPHILS; EOSINOPHILS; and BASOPHILS. Granulocyte
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012235 Rhodamines A family of 3,6-di(substituted-amino)-9-benzoate derivatives of xanthene that are used as dyes and as indicators for various metals; also used as fluorescent tracers in histochemistry. Rhodamine

Related Publications

D W Sehy, and L E Shao, and D Rideout, and J Yu
January 1987, Haematology and blood transfusion,
D W Sehy, and L E Shao, and D Rideout, and J Yu
January 1986, Transfusion,
D W Sehy, and L E Shao, and D Rideout, and J Yu
January 1997, Methods in molecular biology (Clifton, N.J.),
D W Sehy, and L E Shao, and D Rideout, and J Yu
September 1983, International journal of cell cloning,
Copied contents to your clipboard!