The kl-3 loop of the Y chromosome of Drosophila melanogaster binds a tektin-like protein. 1993

C Pisano, and S Bonaccorsi, and M Gatti
Istituto Pasteur, Fondazione Cenci-Bolognetti, Roma, Italy.

Primary spermatocyte nuclei of Drosophila melanogaster exhibit three giant lampbrush-like loops formed by the kl-5, kl-3 and ks-1 Y-chromosome fertility factors. These structures contain and abundantly transcribe highly repetitive, simple sequence DNAs and accumulate large amounts of non-Y-encoded proteins. By immunizing mice with the 53-kD fraction (enriched in beta 2-tubulin) excised from a sodium dodecyl sulfate-polyacrylamide gel loaded with Drosophila testis proteins we raised a polyclonal antibody, designated as T53-1, which decorates the kl-3 loop and the sperm flagellum. Two dimensional immunoblot analysis showed that the T53-1 antibody reacts with a single protein of about 53 kD, different from the tubulins and present both in X/Y and X/O males. Moreover, the antigen recognized by the T53-1 antibody proved to be testis-specific because it was detected in testes and seminal vesicles but not in other male tissues or in females. The characteristics of the protein recognized by the T53-1 antibody suggested that it might be a member of a class of axonemal proteins, the tektins, known to form Sarkosyl-urea insoluble filaments in the wall of flagellar microtubules. Purification of the Sarkosyl-urea insoluble fraction of D. melanogaster sperm revealed that it contains four polypeptides having molecular masses ranging from 51 to 57 kD. One of these polypeptides reacts strongly with the T53-1 antibody but none of them reacts with antitubulin antibodies. These results indicate that the kl-3 loop binds a non-Y encoded, testis-specific, tektin-like protein which is a constituent of the sperm flagellum. This finding supports the hypothesis that the Y loops fulfill a protein-binding function required for the proper assembly of the axoneme components.

UI MeSH Term Description Entries
D008297 Male Males
D008868 Microtubule Proteins Proteins found in the microtubules. Proteins, Microtubule
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D005407 Flagella A whiplike motility appendage present on the surface cells. Prokaryote flagella are composed of a protein called FLAGELLIN. Bacteria can have a single flagellum, a tuft at one pole, or multiple flagella covering the entire surface. In eukaryotes, flagella are threadlike protoplasmic extensions used to propel flagellates and sperm. Flagella have the same basic structure as CILIA but are longer in proportion to the cell bearing them and present in much smaller numbers. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Flagellum
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein

Related Publications

C Pisano, and S Bonaccorsi, and M Gatti
May 2008, Journal of cell science,
C Pisano, and S Bonaccorsi, and M Gatti
November 2000, Proceedings of the National Academy of Sciences of the United States of America,
C Pisano, and S Bonaccorsi, and M Gatti
November 2002, Genetics,
C Pisano, and S Bonaccorsi, and M Gatti
October 2020, Proceedings. Biological sciences,
C Pisano, and S Bonaccorsi, and M Gatti
December 1982, Proceedings of the National Academy of Sciences of the United States of America,
C Pisano, and S Bonaccorsi, and M Gatti
August 2012, Genetics,
C Pisano, and S Bonaccorsi, and M Gatti
August 2011, Chromosoma,
C Pisano, and S Bonaccorsi, and M Gatti
January 1933, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!