Cation permeability ratios of sodium channels in normal and grayanotoxin-treated squid axon membranes. 1977

T Hironaka, and T Narahashi

Permeabilities of squid axon membranes to various cations at rest and during activity have been measured by voltage clamp before and during internal perfusion of 4 X 10(-5) M grayanotoxin I. The resting sodium and potassium permeabilities were estimated to be 6.85 X 10(-8) cm/sec and 2.84 X 10(-6) cm/sec, respectively. Grayanotoxin I increased the resting sodium permeability to 7.38 10(-7) cm/sec representing an 11-fold increase. The potassium permeability was increased only by a factor of 1.24. The resting permeability ratios as estimated by the voltage clamp method before application of grayanotoxin I were Na (1): Li (0.83): formamidine (1.34): guanidine (1.49): Cs (0.87): methylguanidine (0.86): methylamine (0.78). Grayanotoxin I did not drastically the resting permeability ratios with a result of Na (1): Li (0.95): formamidine (1.27): guanidine (1.16): Cs (0.47): methylguanidine (0.72): methylamine (0.46). The membrane potential method gave essentially the same resting permability ratios before and during application of grayanotoxin I if corrections were made for permeability to choline as the cation substitute and for changes in potassium permeability caused by test cations. The permeability ration choline/Na was estimated to be 0.72 by the voltage clamp method and 0.65 by the membrane potential method. Grayanotoxin I decreased the ration to 0.43. The permeability ratios during peak transient current were estimated to be Na (1): Li (1.12): formamidine (0.20): guanidine (0.20): Cs (0.085): methylguanidine (0.061): methylamine (0.036). Thus the sodium channels for the peak current are much more selective to cation than the resting sodium channels. It appears that the resting sodium channels in normal and grayanotoixn I-treated axons are operationally different from the sodium channels that undergo a conductance increase upon stimulation.

UI MeSH Term Description Entries
D008094 Lithium An element in the alkali metals family. It has the atomic symbol Li, atomic number 3, and atomic weight [6.938; 6.997]. Salts of lithium are used in treating BIPOLAR DISORDER. Lithium-7,Lithium 7
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008744 Methylamines Derivatives of methylamine (the structural formula CH3NH2).
D010947 Plants, Toxic Plants or plant parts which are harmful to man or other animals. Plants, Poisonous,Plant, Poisonous,Plant, Toxic,Poisonous Plant,Poisonous Plants,Toxic Plant,Toxic Plants
D011083 Polycyclic Compounds Compounds which contain two or more rings in their structure. Compounds, Polycyclic
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002414 Cations, Monovalent Positively charged atoms, radicals or group of atoms with a valence of plus 1, which travel to the cathode or negative pole during electrolysis. Monovalent Cation,Cation, Monovalent,Monovalent Cations
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D002586 Cesium A member of the alkali metals. It has an atomic symbol Cs, atomic number 55, and atomic weight 132.91. Cesium has many industrial applications, including the construction of atomic clocks based on its atomic vibrational frequency. Caesium,Caesium-133,Cesium-133,Caesium 133,Cesium 133

Related Publications

T Hironaka, and T Narahashi
December 1981, The Journal of pharmacology and experimental therapeutics,
T Hironaka, and T Narahashi
February 1973, The Journal of pharmacology and experimental therapeutics,
T Hironaka, and T Narahashi
January 1981, Neuroscience,
T Hironaka, and T Narahashi
September 1985, Biophysical journal,
T Hironaka, and T Narahashi
March 1977, The Journal of general physiology,
T Hironaka, and T Narahashi
February 1997, Pflugers Archiv : European journal of physiology,
T Hironaka, and T Narahashi
January 1972, Acta cientifica venezolana,
T Hironaka, and T Narahashi
January 1985, The Japanese journal of physiology,
T Hironaka, and T Narahashi
December 1987, Biophysical journal,
Copied contents to your clipboard!