Characterization of mutations in divIB of Bacillus subtilis and cellular localization of the DivIB protein. 1993

E J Harry, and B J Stewart, and R G Wake
Department of Biochemistry, University of Sydney, New South Wales, Australia.

Four temperature-sensitive mutations in the divIB gene of Bacillus subtilis have been localized to the region corresponding to the C-terminal half of the 263-residue DivIB protein. Antiserum was raised to the 80% C-terminal portion lying on one side of a putative transmembrane (hydrophobic) segment, and used to examine aspects of the nature and localization of the DivIB protein in the cell. A single DivIB species of a size equal to the full-length protein encoded by the divIB gene was detected in wild-type cells. Cell fractionation studies established that DivIB is associated preferentially with the cell envelope (membrane plus cell wall), with approximately 50% being released into solution upon treatment of cells with lysozyme under conditions that yield protoplasts. Of the remaining 50%, approximately half remained firmly associated with the membrane fraction. On the basis of the 'positive-inside rule' of von Heijne (1986) it is suggested that the topology of membrane-bound DivIB is such that the long C-terminal portion is directed to the outside and the smaller N-terminal portion to the inside of the cell. DivIB in protoplasts was rapidly degraded by proteinase K under conditions where there was no general proteolysis of the cytoplasmic proteins. This is consistent with its absence from the cytoplasm, and with the predicted membrane topology. Septum positioning in a divIB null mutant, which grows as filaments at temperatures of 30 degrees C and below, was found to be normal. It appears that DivIB is needed for achieving the appropriate rate of initiation of septum formation at normal division sites. It is proposed that the C-terminal portion of DivIB, localized on the exterior surface of the membrane and in juxtaposition to the peptidoglycan, normally interacts with another protein (or proteins) to initiate septum formation.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011523 Protoplasts The protoplasm and plasma membrane of plant, fungal, bacterial or archaeon cells without the CELL WALL. Protoplast
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002473 Cell Wall The outermost layer of a cell in most PLANTS; BACTERIA; FUNGI; and ALGAE. The cell wall is usually a rigid structure that lies external to the CELL MEMBRANE, and provides a protective barrier against physical or chemical agents. Cell Walls,Wall, Cell,Walls, Cell
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial

Related Publications

E J Harry, and B J Stewart, and R G Wake
January 1997, Molecular microbiology,
E J Harry, and B J Stewart, and R G Wake
February 1994, Journal of bacteriology,
E J Harry, and B J Stewart, and R G Wake
January 2005, Molecular microbiology,
E J Harry, and B J Stewart, and R G Wake
July 1997, Molecular microbiology,
E J Harry, and B J Stewart, and R G Wake
September 2020, Microbiology (Reading, England),
E J Harry, and B J Stewart, and R G Wake
September 1978, Journal of bacteriology,
E J Harry, and B J Stewart, and R G Wake
April 1997, The EMBO journal,
Copied contents to your clipboard!