Characterization of the Moloney murine leukemia virus stem cell-specific repressor binding site. 1993

G Kempler, and B Freitag, and B Berwin, and O Nanassy, and E Barklis
Vollum Institute for Advanced Biomedical Research, Oregon Health Sciences University, Portland 97201.

The Moloney murine leukemia virus (M-MuLV) repressor binding site (RBS) mediates cell-type-specific repression in embryonal carcinoma (EC) cells of expression from several different promoters, including the M-MuLV long terminal repeat promoter. Silencing has been shown to depend on an element normally located in the proviral 5' noncoding region and occurs at the DNA level in the absence of retroviral proteins. Using fragments of the RBS region, we now show that the minimal size of the silencer corresponds to M-MuLV nt 147-163 and overlaps with the retroviral primer binding site region by 17 of its 18 bp. A panel of point mutations within the RBS has been examined to yield a consensus RBS sequence which is consistent with the notion that a previously identified nuclear factor (binding factor A) mediates RBS repression. Viral vectors using neomycin, beta-galactosidase, and luciferase reporters have been employed to show that RBS-mediated repression occurs in EC and embryonal stem, but not in other tested cell types. Repression was observed to occur within 48 hr of infection, prior to when global methylation of proviruses has been reported to occur. Repression also occurred after azacytidine treatment of EC cells, supporting the notion that the RBS functions independently of provirus methylation. However, levels of provirus methylation in selected cells were increased in the presence of a wild-type RBS, and methylation correlated with a secondary stage of virus repression. Thus, the M-MuLV RBS acts directly to control expression in EC cells and also appears to trigger a secondary level of repression which is coincident with provirus methylation.

UI MeSH Term Description Entries
D008156 Luciferases Enzymes that oxidize certain LUMINESCENT AGENTS to emit light (PHYSICAL LUMINESCENCE). The luciferases from different organisms have evolved differently so have different structures and substrates. Luciferase
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008979 Moloney murine leukemia virus A strain of Murine leukemia virus (LEUKEMIA VIRUS, MURINE) arising during the propagation of S37 mouse sarcoma, and causing lymphoid leukemia in mice. It also infects rats and newborn hamsters. It is apparently transmitted to embryos in utero and to newborns through mother's milk. Moloney Leukemia Virus,Leukemia Virus, Moloney,Virus, Moloney Leukemia
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011533 Proviruses Duplex DNA sequences in eukaryotic chromosomes, corresponding to the genome of a virus, that are transmitted from one cell generation to the next without causing lysis of the host. Proviruses are often associated with neoplastic cell transformation and are key features of retrovirus biology. Provirus
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA

Related Publications

G Kempler, and B Freitag, and B Berwin, and O Nanassy, and E Barklis
September 2003, Journal of virology,
G Kempler, and B Freitag, and B Berwin, and O Nanassy, and E Barklis
August 1990, Molecular and cellular biology,
G Kempler, and B Freitag, and B Berwin, and O Nanassy, and E Barklis
March 1978, Virology,
G Kempler, and B Freitag, and B Berwin, and O Nanassy, and E Barklis
August 1994, Virology,
G Kempler, and B Freitag, and B Berwin, and O Nanassy, and E Barklis
June 1990, Journal of virology,
G Kempler, and B Freitag, and B Berwin, and O Nanassy, and E Barklis
August 2023, Arab journal of gastroenterology : the official publication of the Pan-Arab Association of Gastroenterology,
G Kempler, and B Freitag, and B Berwin, and O Nanassy, and E Barklis
April 2014, Journal of digestive diseases,
G Kempler, and B Freitag, and B Berwin, and O Nanassy, and E Barklis
December 1979, Journal of virology,
G Kempler, and B Freitag, and B Berwin, and O Nanassy, and E Barklis
October 1990, The Journal of biological chemistry,
G Kempler, and B Freitag, and B Berwin, and O Nanassy, and E Barklis
June 1987, Journal of virology,
Copied contents to your clipboard!