Distribution of fibroblast growth factor 5 mRNA in the rat brain: an in situ hybridization study. 1993

F Gómez-Pinilla, and C W Cotman
Department of Psychobiology, University of California, Irvine 92717.

Fibroblast growth factors (FGFs) are potent growth factors with roles in the brain ranging from development to adult plasticity. FGF-5 is a newly described member of the fibroblast growth factor family. In order to evaluate a possible role of FGF-5, we have examined the locus of synthesis of FGF-5 in the rat brain. We have used in situ hybridization of 35S-labelled RNA probe complementary to FGF-5 mRNA. FGF-5 mRNA was present in neurons in select regions of the rat brain. FGF-5 mRNA expression was particularly intense in the olfactory bulb within periglomerular elements and the mitral cell layer. The primary olfactory cortex also showed a robust expression of FGF-5 mRNA mostly within layer II. In the hippocampal formation, the greatest labelling of FGF-5 mRNA occurred in hippocampal pyramidal cells within subfields CA3 and secondarily within subfields CA1, CA2 and CA4. The dentate gyrus granule cells displayed a modest hybridization signal. The cerebral cortex (neocortex) showed a light labelling throughout its rostro-caudal extent mostly within external layers. The entorhinal cortex showed a higher FGF-5 mRNA expression as compared to the neocortex and signal appeared more intense in layer II. In general, FGF-5 mRNA was shown to be localized mostly in limbic structures, suggesting that FGF-5 may play a role in limbic system function or dysfunction.

UI MeSH Term Description Entries
D008297 Male Males
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D005346 Fibroblast Growth Factors A family of small polypeptide growth factors that share several common features including a strong affinity for HEPARIN, and a central barrel-shaped core region of 140 amino acids that is highly homologous between family members. Although originally studied as proteins that stimulate the growth of fibroblasts this distinction is no longer a requirement for membership in the fibroblast growth factor family. DNA Synthesis Factor,Fibroblast Growth Factor,Fibroblast Growth Regulatory Factor,Growth Factor, Fibroblast,Growth Factors, Fibroblast
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017403 In Situ Hybridization A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes. Hybridization in Situ,Hybridization, In Situ,Hybridizations, In Situ,In Situ Hybridizations
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

F Gómez-Pinilla, and C W Cotman
April 1990, The Journal of comparative neurology,
F Gómez-Pinilla, and C W Cotman
June 1998, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc,
F Gómez-Pinilla, and C W Cotman
July 1986, Biochemical and biophysical research communications,
F Gómez-Pinilla, and C W Cotman
March 1991, The Journal of investigative dermatology,
F Gómez-Pinilla, and C W Cotman
September 1993, The Journal of comparative neurology,
F Gómez-Pinilla, and C W Cotman
June 1995, Brain research. Molecular brain research,
F Gómez-Pinilla, and C W Cotman
June 1994, Neurochemical research,
Copied contents to your clipboard!