Neurotoxicity of a prion protein fragment. 1993

G Forloni, and N Angeretti, and R Chiesa, and E Monzani, and M Salmona, and O Bugiani, and F Tagliavini
Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy.

The cellular prion protein (PrPC) is a sialoglycoprotein of M(r) 33-35K that is expressed predominantly in neurons. In transmissible and genetic neurodegenerative disorders such as scrapie of sheep, spongiform encephalopathy of cattle and Creutzfeldt-Jakob or Gerstmann-Sträussler-Scheinker diseases of humans, PrPC is converted into an altered form (termed PrPSc) which is distinguishable from its normal homologue by its relative resistance to protease digestion. PrPSc accumulates in the central nervous system of affected individuals, and its protease-resistant core aggregates extracellularly into amyloid fibrils. The process is accompanied by nerve cell loss, whose pathogenesis and molecular basis are not understood. We report here that neuronal death results from chronic exposure of primary rat hippocampal cultures to micromolar concentrations of a peptide corresponding to residues 106-126 of the amino-acid sequence deduced from human PrP complementary DNA. DNA fragmentation of degenerating neurons indicates that cell death occurred by apoptosis. The PrP peptide 106-126 has a high intrinsic ability to polymerize into amyloid-like fibrils in vitro. These findings indicate that cerebral accumulation of PrPSc and its degradation products may play a role in the nerve cell degeneration that occurs in prion-related encephalopathies.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011328 Prions Small proteinaceous infectious particles which resist inactivation by procedures that modify NUCLEIC ACIDS and contain an abnormal isoform of a cellular protein which is a major and necessary component. The abnormal (scrapie) isoform is PrPSc (PRPSC PROTEINS) and the cellular isoform PrPC (PRPC PROTEINS). The primary amino acid sequence of the two isoforms is identical. Human diseases caused by prions include CREUTZFELDT-JAKOB SYNDROME; GERSTMANN-STRAUSSLER SYNDROME; and INSOMNIA, FATAL FAMILIAL. Mink Encephalopathy Virus,Prion,Encephalopathy Virus, Mink
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis

Related Publications

G Forloni, and N Angeretti, and R Chiesa, and E Monzani, and M Salmona, and O Bugiani, and F Tagliavini
March 1996, Nature,
G Forloni, and N Angeretti, and R Chiesa, and E Monzani, and M Salmona, and O Bugiani, and F Tagliavini
October 1998, The Biochemical journal,
G Forloni, and N Angeretti, and R Chiesa, and E Monzani, and M Salmona, and O Bugiani, and F Tagliavini
January 2012, Omics : a journal of integrative biology,
G Forloni, and N Angeretti, and R Chiesa, and E Monzani, and M Salmona, and O Bugiani, and F Tagliavini
January 2010, Current issues in molecular biology,
G Forloni, and N Angeretti, and R Chiesa, and E Monzani, and M Salmona, and O Bugiani, and F Tagliavini
January 1998, European journal of cell biology,
G Forloni, and N Angeretti, and R Chiesa, and E Monzani, and M Salmona, and O Bugiani, and F Tagliavini
June 2013, Acta biochimica et biophysica Sinica,
G Forloni, and N Angeretti, and R Chiesa, and E Monzani, and M Salmona, and O Bugiani, and F Tagliavini
June 2009, Biochimica et biophysica acta,
G Forloni, and N Angeretti, and R Chiesa, and E Monzani, and M Salmona, and O Bugiani, and F Tagliavini
July 2011, Metallomics : integrated biometal science,
G Forloni, and N Angeretti, and R Chiesa, and E Monzani, and M Salmona, and O Bugiani, and F Tagliavini
January 2012, International journal of molecular sciences,
G Forloni, and N Angeretti, and R Chiesa, and E Monzani, and M Salmona, and O Bugiani, and F Tagliavini
January 1997, The Journal of biological chemistry,
Copied contents to your clipboard!